The phosphorylated pathway of serine biosynthesis is initiated with 3-phosphoglycerate dehydrogenase (PGDH). The liverwort Marchantia polymorpha possesses an amino acid-sensitive MpPGDH which is inhibited by l-serine and activated by five proteinogenic amino acids, while the eudicot Arabidopsis thaliana has amino acid-sensitive AtPGDH1 and AtPGDH3 as well as amino acid-insensitive AtPGDH2. In this study, we analyzed PGDH isozymes of the representative land plants: the monocot Oryza sativa (OsPGDH1-3), basal angiosperm Amborella trichopoda (AmtriPGDH1-2), and moss Physcomitrium (Physcomitrella) patens (PpPGDH1-4). We demonstrated that OsPGDH1, AmtriPGDH1, PpPGDH1, and PpPGDH3 were amino acid-sensitive, whereas OsPGDH2, OsPGDH3, AmtriPGDH2, PpPGDH2, and PpPGDH4 were either sensitive to only some of the six effector amino acids or insensitive to all effectors. This indicates that PGDH sensitivity to effectors has been diversified among isozymes and that the land plant species examined, except for M. polymorpha, possess different isozyme types in terms of regulation. Phylogenetic analysis suggested that the different sensitivities convergently evolved in the bryophyte and angiosperm lineages. Site-directed mutagenesis of AtPGDH1 revealed that Asp538 and Asn556 residues in the ACT domain are involved in allosteric regulation by the effectors. These findings provide insight into the evolution of PGDH isozymes, highlighting the functional diversification of allosteric regulation in land plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8238522PMC
http://dx.doi.org/10.1042/BCJ20210191DOI Listing

Publication Analysis

Top Keywords

allosteric regulation
12
land plants
12
amino acid-sensitive
12
serine biosynthesis
8
amino acids
8
pgdh isozymes
8
amino
6
diversified amino
4
amino acid-mediated
4
acid-mediated allosteric
4

Similar Publications

The human zinc-binding cysteine proteome.

Cell

December 2024

Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. Electronic address:

Zinc is an essential micronutrient that regulates a wide range of physiological processes, most often through zinc binding to protein cysteine residues. Despite being critical for modulation of protein function, the cysteine sites in the majority of the human proteome that are subject to zinc binding remain undefined. Here, we develop ZnCPT, a deep and quantitative mapping of the zinc-binding cysteine proteome.

View Article and Find Full Text PDF

TMEM16A, a key calcium-activated chloride channel, is crucial for many physiological and pathological processes such as cancer, hypertension, and osteoporosis, etc. However, the regulatory mechanism of TMEM16A is poorly understood, limiting the discovery of effective modulators. Here, we unveil an allosteric gating mechanism by presenting a high-resolution cryo-EM structure of TMEM16A in complex with a channel inhibitor that we identified, Tamsulosin, which is resolved at 2.

View Article and Find Full Text PDF

IMPDH2 dephosphorylation under FGFR signaling promotes S-phase progression and tumor growth.

Cell Rep

December 2024

Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China. Electronic address:

Inosine monophosphate dehydrogenase 2 (IMPDH2) is highly expressed in human cancers; however, its physiological relevance under growth signaling remains to be investigated. Here, we show that IMPDH2 serine 122 is phosphorylated by CDK1, and this modification attenuates the catalytic activity of IMPDH2 for IMP oxidation and simultaneously represses its allosteric modulation by purine nucleotides. Fibroblast growth factor receptor (FGFR) signaling activation triggers IMPDH2-Ser122 dephosphorylation mediated by protein phosphatase 2A (PP2A), which is dependent on FGFR3-mediated PPP2R1A-Tyr261 phosphorylation leading to PPP2CA-PPP2R1A-IMPDH2 interactions.

View Article and Find Full Text PDF

The rapid identification of protein-protein interactions has been significantly enabled by mass spectrometry (MS) proteomics-based methods, including affinity purification-MS, crosslinking-MS, and proximity-labeling proteomics. While these methods can reveal networks of interacting proteins, they cannot reveal how specific protein-protein interactions alter protein function or cell signaling. For instance, when two proteins interact, there can be emergent signaling processes driven purely by the individual activities of those proteins being co-localized.

View Article and Find Full Text PDF

Macrocycles represent one important class of functional molecules, and dynamic macrocycles with the potential of cleavability, adaptability, and topological conversion are challenging. Herein we report photoswitchable allosteric and topological control of dynamic covalent macrocycles and further the use in guest binding and mechanically interlocked molecules. The manipulation of competing ring-chain equilibria and bond formation/scission within reaction systems enabled light-induced structural regulation over dithioacetal and thioacetal dynamic bonds, accordingly realizing bidirectional switching between crown ether-like covalent macrocycles and their linear counterparts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!