A novel covalent organic polymer was prepared using 1,5-diaminonaphthalene as a linker and cyanuric chloride as a node. A thin-film nanocomposite of 1,5-diaminonaphthalene covalent organic polymer and cellulose nanocrystalline was then fabricated via filtering and casting method. The effect of incorporation of various amounts of 1,5-diaminonaphthalene covalent organic polymer and cellulose nanocrystalline was studied to obtain an efficient nanocomposite thin-film with a large number of polar functional groups and high mechanical stability. Field emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectrometry, and thermogravimetric analysis techniques were applied for the characterization of physicochemical properties of the prepared materials. Imipramine was determined in the biological samples using thin-film microextraction followed by gas chromatography flame ionization detection. Parameters affecting the extraction efficiency of imipramine were investigated. Under the optimized conditions, the limit of detection was 0.5 ng/mL. Film-to-film reproducibility for three different films fabricated under the same conditions (at three concentration levels) varied between 8.9 and 9.7%. The linear dynamic range covered more than three orders of magnitude (2-5000 ng/mL) with a determination coefficient of 0.9985. The method was successfully applied for preconcentration and determination of imipramine in biological samples with spiking recoveries between 78 and 93%.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jssc.202001245DOI Listing

Publication Analysis

Top Keywords

covalent organic
16
organic polymer
16
biological samples
12
thin-film microextraction
8
imipramine biological
8
15-diaminonaphthalene covalent
8
polymer cellulose
8
cellulose nanocrystalline
8
novel nanocomposite
4
nanocomposite based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!