Novel invertebrate-killing compounds are required in agriculture and medicine to overcome resistance to existing treatments. Because insecticides and anthelmintics are discovered in phenotypic screens, a crucial step in the discovery process is determining the mode of action of hits. Visible whole-organism symptoms are combined with molecular and physiological data to determine mode of action. However, manual symptomology is laborious and requires symptoms that are strong enough to see by eye. Here, we use high-throughput imaging and quantitative phenotyping to measure Caenorhabditis elegans behavioral responses to compounds and train a classifier that predicts mode of action with an accuracy of 88% for a set of ten common modes of action. We also classify compounds within each mode of action to discover substructure that is not captured in broad mode-of-action labels. High-throughput imaging and automated phenotyping could therefore accelerate mode-of-action discovery in invertebrate-targeting compound development and help to refine mode-of-action categories.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8144879PMC
http://dx.doi.org/10.15252/msb.202110267DOI Listing

Publication Analysis

Top Keywords

mode action
20
high-throughput imaging
8
action
6
mode
5
behavioral fingerprints
4
fingerprints predict
4
predict insecticide
4
insecticide anthelmintic
4
anthelmintic mode
4
action novel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!