Piceatannol is a natural plant-derived compound with protective effects against cardiovascular diseases. However, its effect on cerebral ischaemia-reperfusion injury (CIRI) induced by oxidative stress remains unclear. This study aimed to investigate piceatannol's antioxidation in CIRI. An in vitro oxygen-glucose deprivation followed by reoxygenation model was used and cell viability was measured. A middle cerebral artery occlusion followed by reperfusion model was used in vivo. Neurological function, encephalisation quotient, oedema, and volume of the cerebral infarction were then evaluated. The effects of piceatannol on histopathological findings, as well as the ultrastructure of the cortex, were analysed. The activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and lactate dehydrogenase (LDH) and the malondialdehyde (MDA) content was measured both in vitro and in vivo. Finally, the expression of nuclear factor erythroid-2-related factor 2 (Nrf2), hemeoxygenase-1 (HO-1), and nicotinamide adenine dinucleotide phosphate quinone oxidoreductase 1 (NQO1) in cerebral tissue was detected using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting. Our results demonstrated that cell viability in the piceatannol groups was increased. The SOD, GSH-Px activities were increased as LDH activity and MDA content decreased in the piceatannol groups both in vitro and in vivo, reflecting a decrease in oxidative stress. The neurological severity score and infarction volume in the piceatannol groups at doses of 10 and 20 mg/kg were lower than those of the model group. Furthermore, the damage seen on histopathological examination was partially attenuated by piceatannol. RT-qPCR and western blot analysis indicated that the expression of Nrf2, HO-1, and NQO1 were significantly increased by piceatannol. The results of the study demonstrate that piceatannol exerts a protective effect against CIRI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11064-021-03328-8 | DOI Listing |
Eur J Med Chem
April 2025
Université de Franche-Comté, EFS, INSERM, RIGHT (UMR 1098), F-25000, Besançon, France. Electronic address:
High arginase activity is associated with several pathological conditions, including TGF-β-induced fibrosis, by increasing levels of the proline precursor l-ornithine, thereby promoting collagen biosynthesis and increasing oxidative stress due to nitric oxide synthase (NOS) uncoupling. The natural piceatannol has been shown to have beneficial effects on collagen deposition, fibrosis and oxidative stress. In this study, we present an in-depth structure-activity relationship study on arginase I, which resulted in the thioamide derivative 12a with dual catechol rings that displays potent inhibitory activity with IC₅₀ values of 9 μM and 55 μM for bovine and human arginase I, respectively.
View Article and Find Full Text PDFBiochem Biophys Rep
December 2024
Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
Int J Biol Sci
November 2024
Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02453, Republic of Korea.
Reprod Sci
March 2025
Department of Urological Surgery No.2, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan Province, China.
The purpose of this study was to explore the mechanism of action of Piceatannol (PIC) in attenuating oxidative damage to sperm during cryopreservation. Semen samples were collected and homogenized into six equal parts for freeze-thawing experiments. Four different concentrations of PIC were utilized as cryoprotectants during the freeze-thawing process, maintaing a semen to PIC ratio of 1:1, while sperm motility after freezing and thawing was analyzed using computer-assisted sperm analysis (CASA).
View Article and Find Full Text PDFPlants (Basel)
September 2024
Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, 03690 Alicante, Spain.
Piceatannol is a naturally occurring hydroxylated analogue of the stilbene phytoalexin resveratrol that can be found in grape fruit and derived products. Piceatannol has aroused great interest as it has been shown to surpass some human health-beneficial properties of resveratrol including antioxidant activity, several pharmacological activities and also bioavailability. The plant biosynthetic pathway of piceatannol is still poorly understood, which is a bottleneck for the development of both plant defence and bioproduction strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!