The neural encoding of visual features in primary visual cortex (V1) is well understood, with strong correlates to low-level perception, making V1 a strong candidate for vision restoration through neuroprosthetics. However, the functional relevance of neural dynamics evoked through external stimulation directly imposed at the cortical level is poorly understood. Furthermore, protocols for designing cortical stimulation patterns that would induce a naturalistic perception of the encoded stimuli have not yet been established. Here, we demonstrate a proof of concept by solving these issues through a computational model, combining (1) a large-scale spiking neural network model of cat V1 and (2) a virtual prosthetic system transcoding the visual input into tailored light-stimulation patterns which drive in situ the optogenetically modified cortical tissue. Using such virtual experiments, we design a protocol for translating simple Fourier contrasted stimuli (gratings) into activation patterns of the optogenetic matrix stimulator. We then quantify the relationship between spatial configuration of the imposed light pattern and the induced cortical activity. Our simulations in the absence of visual drive (simulated blindness) show that optogenetic stimulation with a spatial resolution as low as 100 [Formula: see text]m, and light intensity as weak as [Formula: see text] photons/s/cm[Formula: see text] is sufficient to evoke activity patterns in V1 close to those evoked by normal vision.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8144184PMC
http://dx.doi.org/10.1038/s41598-021-88960-8DOI Listing

Publication Analysis

Top Keywords

cortical
5
assessment optogenetically-driven
4
optogenetically-driven strategies
4
strategies prosthetic
4
prosthetic restoration
4
restoration cortical
4
cortical vision
4
vision large-scale
4
neural
4
large-scale neural
4

Similar Publications

Electroencephalogram Features Reflect Effort Corresponding to Graded Finger Extension: Implications for Hemiparetic Stroke.

Biomed Phys Eng Express

January 2025

F. Joseph Halcomb III, MD, Department of Biomedical Engineering, University of Kentucky, 143 Graham Ave., Lexington, Kentucky, 40506, UNITED STATES.

Brain-computer interfaces (BCIs) offer disabled individuals the means to interact with devices by decoding the electroencephalogram (EEG). However, decoding intent in fine motor tasks can be challenging, especially in stroke survivors with cortical lesions. Here, we attempt to decode graded finger extension from the EEG in stroke patients with left-hand paresis and healthy controls.

View Article and Find Full Text PDF

Chitinase 3-like protein 1 (CHI3L1) is emerging as a promising biomarker for assessing intracranial lesion burden and predicting prognosis in traumatic brain injury (TBI) patients. Following experimental TBI, Chi3l1 transcripts were detected in reactive astrocytes located within the pericontusional cortex. However, the cellular sources of CHI3L1 in response to hemorrhagic contusions in human brain remain unidentified.

View Article and Find Full Text PDF

Purpose: The impact of ventriculomegaly (VM) on cortical development and brain functionality has been extensively explored in existing literature. VM has been associated with higher risks of attention-deficit and hyperactivity disorders, as well as cognitive, language, and behavior deficits. Some studies have also shown a relationship between VM and cortical overgrowth, along with reduced cortical folding, both in fetuses and neonates.

View Article and Find Full Text PDF

Introduction: Type 2 diabetes mellitus (T2DM) is linked to abnormal brain structure and cognitive dysfunction. However, there is a lack of studies conducted to assess the impact of diabetes on cortical gyrification and cognition. The aim of this cross-sectional study was to assess the potential negative effects of glucose metabolism levels on cognition and cortical gyrification in T2DM.

View Article and Find Full Text PDF

Introduction: Patients with bipolar disorder (BD) demonstrate episodic memory deficits, which may be hippocampal-dependent and may be attenuated in lithium responders. Induced pluripotent stem cell-derived CA3 pyramidal cell-like neurons show significant hyperexcitability in lithium-responsive BD patients, while lithium nonresponders show marked variance in hyperexcitability. We hypothesize that this variable excitability will impair episodic memory recall, as assessed by cued retrieval (pattern completion) within a computational model of the hippocampal CA3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!