A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A three-branch 3D convolutional neural network for EEG-based different hand movement stages classification. | LitMetric

A three-branch 3D convolutional neural network for EEG-based different hand movement stages classification.

Sci Rep

Key Laboratory of Sustainable Forest Management and Environmental Microorganism Engineering of Heilongjiang Province, Northeast Forestry University, Harbin, 150040, China.

Published: May 2021

Motor Imagery is a classical method of Brain Computer Interaction, in which electroencephalogram (EEG) signal features evoked by the imaginary body movements are recognized, and relevant information is extracted. Recently, various deep learning methods are being focused on finding an easy-to-use EEG representation method that can preserve both temporal information as well as spatial information. To further utilize the spatial and temporal features of EEG signals, we proposed a 3D representation of EEG and an end-to-end EEG three-branch 3D convolutional neural network, to address the class imbalance problem (dataset show unequal distribution among their classes), we proposed a class balance cropped strategy. Experimental results indicated that there are also a problem of the different classification difficulty for different classes in motor stages classification tasks, we introduce focal loss to address problem of 'easy-hard' examples, when trained with the focal loss, the three-branch 3D-CNN network achieve good performance (relatively more balanced classification accuracy of binary classifications) on the WAY-EEG-GAL data set. Experimental results show that the proposed method is a good method, which can improve classification effect of different motor stages classification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8144431PMC
http://dx.doi.org/10.1038/s41598-021-89414-xDOI Listing

Publication Analysis

Top Keywords

stages classification
12
three-branch convolutional
8
convolutional neural
8
neural network
8
classification motor
8
motor stages
8
focal loss
8
classification
6
eeg
5
network eeg-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!