The current paper evaluates the phytoremediation ability and physiological responses of selected resistant plant species to the hazardous levels of elements in the marble waste polluted ecosystem. Preliminary results demonstrate that all the indicator/resistant plant species i.e., Ailanthus altissima, Arundo donax, Cynodon dactylon, Erigeron canadensis, Cannabis sativa, Ficus carica, Lathyrus aphaca, Morus alba, Populus alba, Robinia pseudoacacia and Vitex negundo were the best Phyto-extractors and Phyto-stabilizers for most of the heavy metals in general and Mg, Ca, Fe, Cu and Na in particular (at p < 0.05). Structural Equation Modeling confirmed that marble waste pollution has a direct and significant (R =0.80) impact on proline synthesis and hence a role in combating the pollution. Chlorophyll content decreased by 4% in studied plant species when the concentration of pollutants increased. It is concluded that the studied bio-indicators - the abundant plant species of the Marble Waste Polluted Systems (MWPS) have a significant role in its remediation. Increasing proline accumulation and decreasing chlorophyll contents with an increase in pollution in the studied plants show resilience of the ecosystem in response to the external lithospheric toxicities. It is recommended that the recognized plant species could be planted abundantly to remediate the MWPS around the marble processing and other such industries and their catchments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.125451DOI Listing

Publication Analysis

Top Keywords

elements marble
8
polluted ecosystem
8
physiological responses
8
plant species
8
politics natural
4
natural vegetation
4
vegetation balance
4
balance hazardous
4
hazardous level
4
level elements
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!