Wastewater treatment is challenged by the continuous emergence of chemical and biological contaminants. Disinfection, advanced oxidation, and activated carbon technologies are accessible in high-income countries to suppress them. Low-cost, easily implementable, and scalable solutions are needed for sanitation across regions. We studied the properties of low-cost absorbents recycled from drinking water and wastewater treatment plant residues to remove environmental DNA and xenogenetic elements from used water. Materials characteristics and DNA adsorption properties of used iron-oxide-coated sands and of sewage-sludge biochar obtained by pyrolysis of surplus activated sludge were examined in bench-scale batch and up-flow column systems. Adsorption profiles followed Freundlich isotherms, suggesting a multilayer adsorption of nucleic acids on these materials. Sewage-sludge biochar exhibited high DNA adsorption capacity (1 mg g) and long saturation breakthrough times compared to iron-oxide-coated sand (0.2 mg g). Selected antibiotic resistance genes and mobile genetic elements present on the free-floating extracellular DNA fraction and on the total environmental DNA (i.e., both extra/intracellular) were removed at 85% and 97% by sewage-sludge biochar and at 54% and 66% by iron-oxide-coated sand, respectively. Sewage-sludge biochar is attractive as low-cost adsorbent to minimize the spread of antimicrobial resistances to the aquatic environment while strengthening the role of sewage treatment plants as resource recovery factories.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.146364 | DOI Listing |
Bioresour Technol
January 2025
College of Resources and Environment, Northeast Agricultural University, Harbin 150030 Heilongjiang, China. Electronic address:
Enhancing the passivation of heavy metals and increasing organic matter content during the composting of sewage sludge poses significant challenges for maximizing its utilization value. Results indicated that in the control, biochar, microbial agents and microbial agents-loaded biochar (BCLMA) groups, BCLMA addition led to a higher composting temperature, with increases of 17-62% in humic acid, 25-73% in germination index, and 30-35% in organic matter consumption. And the residual fraction of Cu, Zn, Cr and Cd were increased by 30%, 12%, 22%, and 17%, respectively.
View Article and Find Full Text PDFJ Environ Manage
January 2025
College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China.
Improving the quality of degraded coastal saline-alkali soil and promoting plant growth are key challenges in the restoration of ecological functions in coastal regions. Organic ameliorants such as effective microbial (EM) agent, biochar, and organic compost have been proposed as sustainable solutions, but limited research has explored the combined effects of these amendments. This study investigates five organic improvement strategies: individual applications of EM, corn straw biochar (CSB), and sewage sludge-reed straw compost (COM), along with combined treatments of CSB + EM and COM + EM, on Sesbania growth in a pot experiment.
View Article and Find Full Text PDFChemosphere
January 2025
Faculty of Agronomy and Veterinary Medicine, University of Brasília, 70910-970, Brasília, Federal District, Brazil.
Phosphorus (P) plays an essential role for plant growth, but conventional P sources used in agriculture are finite and non-renewable. As a result, there is a growing need to explore alternative P sources such as sewage sludge (SS) - a P-rich solid waste and valuable renewable resource that is often mismanaged globally. Pyrolysis is a promising technique for managing SS.
View Article and Find Full Text PDFWater Res
December 2024
Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, PR China. Electronic address:
As freshwater demand grows globally, using reclaimed water in natural water bodies has become essential. Constructed wetlands (CWs) are widely used for advanced wastewater treatment due to their environmental benefits. However, low carbon/nitrogen (C/N) ratios in wastewater limit nitrogen removal, often leading to eutrophication.
View Article and Find Full Text PDFPeerJ
December 2024
Department of Chemistry, University of Trnava, Trnava, Slovakia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!