Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Surface acoustic wave (SAW) devices offer many benefits in chemistry and biomedicine, enabling precise manipulation of micro-droplets, mixing of liquids by acoustic streaming and pumping of liquids in enclosed channels, while presenting a cost-effective and easy fabrication and integration with electronic devices. In this work, we present microfluidic devices which use graphene-based interdigital transducers (IDTs) to generate SAWs with a frequency of 100 MHz and an amplitude of up to 200 pm, which allow us to manipulate microparticle solutions by acoustic streaming. Due to the negligible mass loading of the piezoelectric surface by graphene, the SAWs generated by these devices have no frequency shift, typically observed when metal IDTs are used.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ac0473 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!