A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Drug repurposing for hyperlipidemia associated disorders: An integrative network biology and machine learning approach. | LitMetric

Drug repurposing for hyperlipidemia associated disorders: An integrative network biology and machine learning approach.

Comput Biol Chem

Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, 110078, India; Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology Dwarka, New Delhi 110078, India. Electronic address:

Published: June 2021

Hyperlipidemia causes diseases like cardiovascular disease, cancer, Type II Diabetes and Alzheimer's disease. Drugs that specifically target HL associated diseases are required for treatment. 34 KEGG pathways targeted by lipid lowering drugs were used to construct a directed protein-protein interaction network and driver nodes were determined using CytoCtrlAnalyser plugin of Cytoscape 3.6. The involvement of driver nodes of HL in other diseases was verified using GWAS. The central nodes of the network and 34 overrepresented pathways had a critical role in Hyperlipidemia. The PI3K-AKT signalling pathway, non-essentiality, non-centrality and approved drug target status were the predominant features of the driver nodes. Next, a Random Forest classifier was trained on 1445 molecular descriptors calculated using PaDEL for 50 approved lipid lowering and 84 lipid raising drugs as the positive and negative training set respectively. The classifier showed average accuracy of 76.8 % during 5-fold cross validation with AUC of 0.79 ± 0.06 for the ROC curve. The classifier was applied to select molecules with favourable properties for lipid lowering from the 130 approved drugs interacting with the identified driver nodes. We have integrated diverse network data and machine learning to predict repurposing of nine drugs for treatment of HL associated diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiolchem.2021.107505DOI Listing

Publication Analysis

Top Keywords

driver nodes
16
lipid lowering
12
machine learning
8
associated diseases
8
drugs
5
nodes
5
drug repurposing
4
repurposing hyperlipidemia
4
hyperlipidemia associated
4
associated disorders
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!