A novel ratiometric fluorescent probe has been developed through a simple synthetic route for the detection of alkaline phosphatase(ALP) in aqueous media and for fluorescence imaging in living cells. The introduction of a spontaneous-degradation spacer in the design of the fluorescent probe is beneficial for the ratio detection method and allows the selection of a fluorophore with an amino group. Under catalysis by ALP, the phosphate monoester bond breaks; this is followed by 1,4-elimination, decomposition of the carbamate moiety, and subsequent formation of the 4-amine-1,8-naphthalimide fluorophore. The probe APN shows a significant fluorescence colour change from blue to green in response to ALP, and the fluorescence intensity ratio of the probe solution (F/F) has a good linear relationship with the ALP concentration in the range of 0 to 100 U L. Our studies have demonstrated that APN exhibits high accuracy in recognising ALP, with a detection limit as low as 0.16 U L. Furthermore, the probe shows very good biocompatibility, which is beneficial for its application in biological systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2021.119953 | DOI Listing |
Methods Cell Biol
January 2025
Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Santa Maria, RS, Brazil.
Alzheimer's disease (AD) is the leading cause of dementia in the elderly, clinically characterized by memory loss, cognitive decline, and behavioral disturbances. Its pathogenesis is not fully comprehended but involves intracellular depositions of amyloid beta peptide (Aβ) and neurofibrillary tangles of hyperphosphorylated tau. Currently, pharmacological interventions solely slow the progression of symptoms.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Food Inspection and Quarantine Technology Center of Shenzhen Customs, Shenzhen Academy of Inspection and Quarantine, Shenzhen, 518045, PR China.
Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China; Engineering Research Center of Brain Diseases Drug Development, Universities of Shaanxi Province, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China. Electronic address:
Background: Accurate quantification of microRNA (miRNA) is of great significance because it provides opportunities for the accurate early diagnosis of a series of human diseases including cancers. Currently, complicated nucleic acid amplification technologies are always required for the highly sensitive miRNA detection. The introduction of nucleic acid signal amplification coupled with various enzymes will inevitably lead to tedious work and increase the complexity of the analysis process.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
A green approach towards the synthesis of both conventional and magnetic fluorescent powders for revealing latent fingerprints (FPs) is disclosed. The powders formulation is based on a biodegradable matrix and fluorescent dyes extracted from commercial felt-tip markers. Two classes of powders are described: one with a fluorescent component, and other with both fluorescent and magnetic components.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.
The first shikimic acid derived fluorescent carbon dots (SACNDs-FITC) for multi-modal detection and simultaneous removal of Hg is revealed. The fluorescence of SACNDs-FITC centered at 520 nm can be selectively quenched by Hg, while the emission centered at 420 nm remains constant which can be used for self-calibration. Naked-eye distinguishable color change from yellow to colourless under daylight and from green to blue under UV light could be observed for SACNDs-FITC in the real-time detection of Hg.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!