Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The accurate determination of trace elements in vegetable edible oils is still an analytical challenge, owing to their low concentration levels and the complex matrix of the vegetable oils. The aim of this study was to develop a fast and simple analytical method to quantify 45 elements in small mass samples (0.5 g) of extra virgin olive oils by inductively coupled plasma mass spectrometry. To evaluate the best and fastest sample preparation procedure, ultrasonic extraction and wet digestion methods were compared using oil certified reference material with different reagent mixtures, reagent volumes, and times for sample extraction or digestion. The use of 5 mL reagent mixture F [10% (v/v) HNO and HO, 2:1 (v/v)] for sample digestion in a water bath (95 °C, 40 min) was found to produce satisfactory results in all cases as validated from sample recovery experiments over three different extra virgin olive oil samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2021.130027 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!