Copper impair autophagy on zebrafish (Danio rerio) gill epithelium.

Environ Toxicol Pharmacol

Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB and Inov4Agro -Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Portugal; Department of Biology and Environment, Life Sciences and Environment School, University of Trás-os-Montes e Alto Douro, Apt. 1013, 5000-801, Vila Real, Portugal. Electronic address:

Published: August 2021

Copper (Cu) is an essential element for organism's metabolism, being controversially listed as a priority pollutant. Importantly, the toxicity of Cu has been linked to several cell death pathways. Thus, this study aimed to assess if macroautophagic pathways are triggered by Cu in zebrafish gill, the main target of waterborne pollutants. The electron microscopy findings indicated that Cu induced profound impacts on zebrafish gill structure and functions, being this tissue a biomarker sensitive enough to indicate early toxic effects. The findings also support a clear impairment of autophagy, througth the absence of phagossomes and the significant down-regulation mRNA transcript levels of microtubule-associated protein light chain 3 (LC3). The reduction of LC3 levels was often associated to an increase of apoptotic activation, indicating that the inhibition of macroautophagy triggers apoptosis in zebrafish gills. This study highlighted that the autophagic down-regulation might be affected through the activation of other cell death signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.etap.2021.103674DOI Listing

Publication Analysis

Top Keywords

cell death
8
zebrafish gill
8
copper impair
4
impair autophagy
4
zebrafish
4
autophagy zebrafish
4
zebrafish danio
4
danio rerio
4
rerio gill
4
gill epithelium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!