Sand scorpions of the genus Buthacus Birula, 1908 (Buthidae C.L. Koch, 1837) are widespread in the sandy deserts of the Palearctic region, occurring from the Atlantic coast of West Africa across the Sahara, and throughout the Middle East to Central Asia. The limits of Buthacus, its two species groups, and many of its species remain unclear, and in need of revision using modern systematic methods. The study presented here set out to investigate the phylogeny and biogeography of the Buthacus species occurring in the Levant, last studied in 1980. A phylogenetic analysis was performed on 104 terminals, including six species collected from more than thirty localities in Israel and other countries in the region. Three mitochondrial and two nuclear gene loci were sequenced for a total of 2218 aligned base-pairs. Morphological datasets comprising 22 qualitative and 48 quantitative morphological characters were compiled. Molecular and morphological datasets were analyzed separately and simultaneously with Bayesian Inference, Maximum Likelihood, and parsimony. Divergence time and ancestral range estimation analyses were performed, to understand dispersal and diversification. The results support a revised classification of Levantine Buthacus, and invalidate the traditional species groups of Buthacus, instead recovering two geographically-delimited clades, an African clade and an Asian clade, approximately separated by the Jordan Valley (the Jordan Rift Valley or Syro-African Depression), the northernmost part of the Great Rift Valley. The divergence between these clades occurred in the Early Miocene (ca. 19 Ma) in the Levant, coinciding temporally with the existence of two land bridges, which allowed faunal exchange between Africa and Asia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ympev.2021.107212 | DOI Listing |
Am J Bot
January 2025
School of Biological Sciences, Washington State University, Pullman, 99164, Washington, USA.
Premise: The movement of lineages into novel areas can promote ecological opportunity and adaptive radiation, leading to significant species diversity. Not all studies, however, have identified support for ecological opportunity associated with novel intercontinental colonizations. To gain key insights into the drivers of ecological opportunity, we tested whether intercontinental dispersals resulted in ecological opportunity using the Hydrangeaceae-Loasaceae clade, which has numerous centers of diversity across the globe.
View Article and Find Full Text PDFBioelectrochemistry
January 2025
Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580, Brazil. Electronic address:
Owing to fast SARS-CoV-2 mutations, biosensors employing antibodies as biorecognition elements have presented problems with sensitivity and accuracy. To face these challenges, antibodies can be replaced with the human angiotensin converting enzyme 2 (ACE-2), where it has been shown that the affinity between ACE-2 and the receptor binding domain (RBD) increases with the emergence of new variants. Herein, we report on Ni-doped ZnO nanorod electrochemical biosensors employing an ACE-2 peptide (IEEQAKTFLDKFNHEAEDLFYQS-NH) as a biorecognition element for detecting Spike (S) Wild-Type (WT) protein.
View Article and Find Full Text PDFAnn Cardiol Angeiol (Paris)
January 2025
Laboratoire centrale de l'établissement hospitalier Didouche Mourad, Constantine, Algérie; Université constantine 3, faculté de médecine, Algérie. Electronic address:
Introduction: The use of medicinal plants in Algeria is an ancestral practice that remains relevant today. The population relies on plants to treat various diseases and everyday ailments, which can be dangerous, especially when taking medication [1,2]. The interaction between plants and medication can lead to a modification of the plasma concentrations of the latter, which can impact its therapeutic effectiveness and be responsible for toxicity or therapeutic failure [1,2].
View Article and Find Full Text PDFGenome Biol Evol
December 2024
Cornell University, Department of Natural Resources and the Environment, Ithaca, NY.
Transitions across ecological boundaries, such as those separating freshwater from the sea, are major drivers of phenotypic innovation and biodiversity. Despite their importance to evolutionary history, we know little about the mechanisms by which such transitions are accomplished. To help shed light on these mechanisms, we generated the first high-quality, near-complete assembly and annotation of the genome of the American shad (Alosa sapidissima), an ancestrally diadromous (migratory between salinities) fish in the order Clupeiformes of major cultural and historical significance.
View Article and Find Full Text PDFIn this study, we performed a comparative analysis based on a total of 255 spider mitogenomes and four outgroups, of which the mitogenomes of 39 species were assembled de novo, to explore the phylogenetic relationships and the adaptive evolution of mitogenomes. Results showed that had the longest mitochondrial length and the most pronounced codon preference to be UUA, followed by CCU. Codon usage frequencies were similar between families and codon usage in the mitogenome of spiders was mainly influenced by natural selection pressures rather than G/C mutation bias.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!