A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Resveratrol attenuates manganese-induced oxidative stress and neuroinflammation through SIRT1 signaling in mice. | LitMetric

Resveratrol attenuates manganese-induced oxidative stress and neuroinflammation through SIRT1 signaling in mice.

Food Chem Toxicol

Department of Environmental Health, School of Public Health, China Medical University, Address:No.77 Puhe Road, Shenyang North New Area, Shenyang,110122, Liaoning, China. Electronic address:

Published: July 2021

Exposure to excess levels of manganese (Mn) leads to neurotoxicity. Increasing evidence demonstrates that oxidative stress and neuroinflammation are important pathological causes of neurotoxicity. Resveratrol (Rsv), a sirtuin-1 (SIRT1) activator, plays an important role in neuroprotection. However, the molecular mechanisms of Rsv alleviating Mn-induced oxidative stress and neuroinflammation are not fully understood. To evaluate whether Rsv treatment relieves the oxidative stress and neuroinflammation in the hippocampus after Mn exposure through SIRT1 signaling, C57BL/6 adult mice were exposed to MnCl (200 μmol/kg), Rsv (30 mg/kg), and EX527 (5 mg/kg). Our results showed that administering MnCl for 6 weeks caused behavioral impairment and nerve cell injury in hippocampal tissue, which was related to oxidative stress and neuroinflammation. Activating Mn-induced JNK and inhibiting SIRT1 increased the phosphorylated and acetylated levels of NF-κB and STAT3, respectively. However, Rsv reduced the phosphorylated and acetylated levels of NF-κB and STAT3, and attenuated Mn-induced oxidative stress and inflammatory cytokines by activating SIRT1 signaling. Most importantly, EX527, a potent SIRT1 inhibitor, inactivated SIRT1, which prevented Rsv from exerting its beneficial effects. Taken together, our findings revealed that Rsv alleviated Mn-induced oxidative stress and neuroinflammation in adult mice by activating SIRT1.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2021.112283DOI Listing

Publication Analysis

Top Keywords

oxidative stress
28
stress neuroinflammation
24
sirt1 signaling
12
mn-induced oxidative
12
sirt1
8
adult mice
8
phosphorylated acetylated
8
acetylated levels
8
levels nf-κb
8
nf-κb stat3
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!