The deubiquitinating enzyme USP46 (ubiquitin-specific protease 46) is implicated in various cancers. However, its role and regulatory mechanism in HCC (hepatocellular carcinoma) are still unknown. In this study, we showed that USP46 is downregulated in HCC tissues and that low USP46 levels are associated with poor prognosis in HCC patients. In functional experiments, overexpression of USP46 impaired proliferation and metastasis of HCC cells, whereas knockdown of USP46 enhanced cell proliferation and invasiveness in vitro and in vivo. Furthermore, we found that USP46 suppresses HCC cell proliferation and metastasis by inhibiting YAP1. Ectopic expression of YAP1 rescued the inhibition of cell proliferation and metastasis caused by USP46 overexpression. Mechanistically, USP46 promotes the degradation of YAP1 by increasing expression of MST1, and the increase in MST1 protein antagonizes YAP1 to suppress HCC progression. Finally, we demonstrated that USP46 stabilizes the MST1 protein by directly binding to it and decreasing its ubiquitination. Taken together, our results demonstrated that USP46 may be a novel tumor suppressor in HCC. Moreover, USP46 acts as a deubiquitinating enzyme of MST1 to potentiate MST1 kinase activity to suppress tumor growth and metastasis, indicating that USP46 activation may represent a potential treatment strategy for HCC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2021.112646 | DOI Listing |
Nat Commun
November 2024
Research Institute for Maternal and Child Health, The Affiliated Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Traditional Chinese Medicine, School of Pharmacy, Jinan University, Guangzhou, 510632, China.
Activating mutations in NRAS account for 15-20% of melanoma, yet effective anti-NRAS therapies are still lacking. In this study, we unveil the casein kinase 1δ (CK1δ) as an uncharacterized regulator of oncogenic NRAS mutations, specifically Q61R and Q61K, which are the most prevalent NRAS mutations in melanoma. The genetic ablation or pharmacological inhibition of CK1δ markedly destabilizes NRAS mutants and suppresses their oncogenic functions.
View Article and Find Full Text PDFEMBO Rep
December 2024
Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany.
The functions of integrins are tightly regulated via multiple mechanisms including trafficking and degradation. Integrins are repeatedly internalized, routed into the endosomal system and either degraded by the lysosome or recycled back to the plasma membrane. The ubiquitin system dictates whether internalized proteins are degraded or recycled.
View Article and Find Full Text PDFFEBS Open Bio
January 2025
Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan.
Bioinform Biol Insights
October 2024
Scientific Management Department, Dong A University, Danang City, Vietnam.
Deubiquitinating enzymes (DUBs) prevent ubiquitination by eliminating ubiquitin from their substrates. Deubiquitinating enzymes have important roles in a number of cell biology subfields that are highly relevant to diseases like neurodegeneration, cancer, autoimmune disorders, and long-term inflammation. Deubiquitinating enzymes feature a well-defined active site and, for the most part, catalytic cysteine, which makes them appealing targets for small-molecule drug development.
View Article and Find Full Text PDFMol Med Rep
October 2024
Department of Outpatient Department, People's Hospital of Qingdao West Coast New Area, Qingdao, Shandong 266400, P.R. China.
Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the immunohistochemical data shown in Fig. 1D and the flow cytometric data in Fig. 3K were strikingly similar to data appearing in different form in other papers by different authors at different research institutes that were under consideration for publication at around the same time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!