Monocultures of several cell types result in the formation of robust clusters called homotypic aggregates (HAs). How this physical aggregation affects cell fates in immune cell cultures, is poorly understood. We studied anti-CD40-stimulated primary B cell cultures, where cells assembled into large three-dimensional LFA1-driven HAs by 72 h. The dense packing in these aggregates restricts the infiltration of stimulants, such as antibodies, to cells inside the clusters. This creates a concentration gradient of stimulant availability across the cross-section of HAs. We describe a method to retain this positional information even after the disruption of HAs, for analysis by flow cytometry. Comparison of stage-specific cell-surface markers showed that the extent of stimulant-binding affected multiple fates non-uniformly. While germinal center and lineage markers were moderately upregulated, immunoglobulins and markers associated with memory were more than doubled in the peripheral cells binding more anti-CD40. These cells also experienced a strong repression of the plasma cell regulator Prdm1 and an upregulation of the oncogene Myc. Thus, cells at different locations in HAs are subjected to unequal doses of stimulants, leading to a hitherto unreported source of heterogeneity in cell fates. These findings can be extrapolated to understand the dose-dependent effects of stimulants in other three-dimensional cell clusters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2021.112650 | DOI Listing |
Genome Biol
January 2025
College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
Background: In humans and other mammals, the process of oogenesis initiates asynchronously in specific ovarian regions, leading to the localization of dormant and growing follicles in the cortex and medulla, respectively; however, the current understanding of this process remains insufficient.
Results: Here, we integrate single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to comprehend spatial-temporal gene expression profiles and explore the spatial organization of ovarian microenvironments during early oogenesis in pigs. Projection of the germ cell clusters at different stages of oogenesis into the spatial atlas unveils a "cortical to medullary (C-M)" distribution of germ cells in the developing porcine ovaries.
Methods Mol Biol
January 2025
Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
StarTrack is a powerful multicolor genetic tool designed to unravel cellular lineages arising from neural progenitor cells (NPCs). This innovative technique, based on retrospective clonal analysis and built upon the PiggyBac system, creates a unique and inheritable "color code" within NPCs. Through the stochastic integration of 12 distinct plasmids encoding six fluorescent proteins, StarTrack enables precise and comprehensive tracking of cellular fates and progenitor potentials.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
Proc Natl Acad Sci U S A
January 2025
Department of Translational Medical Sciences, School of Medicine, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030.
Induction of cell fates by growth factors impacts many facets of developmental biology and disease. LIN-3/EGF induces the equipotent vulval precursor cells (VPCs) in to assume the 3˚-3˚-2˚-1˚-2˚-3˚ pattern of cell fates. 1˚ and 2˚ cells become specialized epithelia and undergo stereotyped series of cell divisions to form the vulva.
View Article and Find Full Text PDFWater Res
December 2024
Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
Microplastics (MPs) commonly coexist with microalgae in aquatic environments, can heteroaggregate during their interaction, and potentially affect the migration and impacts of MPs in aquatic environments. The hetero-aggregation may also influence the fate of other pollutants through MPs' adsorption or alter their aquatic toxicity. Here, we explored the hetero-aggregation process and its key driving mechanism that occurred between green microalga Chlorella vulgaris (with a cell size of 2-10 μm) and two types of MPs (polystyrene and polylactide, 613 μm).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!