A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting Brain Age Using Machine Learning Algorithms: A Comprehensive Evaluation. | LitMetric

Machine learning (ML) algorithms play a vital role in the brain age estimation frameworks. The impact of regression algorithms on prediction accuracy in the brain age estimation frameworks have not been comprehensively evaluated. Here, we sought to assess the efficiency of different regression algorithms on brain age estimation. To this end, we built a brain age estimation framework based on a large set of cognitively healthy (CH) individuals ( N = 788) as a training set followed by different regression algorithms (22 different algorithms in total). We then quantified each regression-algorithm on independent test sets composed of 88 CH individuals, 70 mild cognitive impairment patients as well as 30 Alzheimer's disease patients. The prediction accuracy in the independent test set (i.e., CH set) varied in regression algorithms mean absolute error (MAE) from 4.63 to 7.14 yrs, R from 0.76 to 0.88. The highest and lowest prediction accuracies were achieved by Quadratic Support Vector Regression algorithm (MAE = 4.63 yrs, R = 0.88, 95% CI = [-1.26, 1.42]) and Binary Decision Tree algorithm (MAE = 7.14 yrs, R = 0.76, 95% CI = [-1.50, 2.62]), respectively. Our experimental results demonstrate that the prediction accuracy in brain age frameworks is affected by regression algorithms, indicating that advanced machine learning algorithms can lead to more accurate brain age predictions in clinical settings.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2021.3083187DOI Listing

Publication Analysis

Top Keywords

brain age
28
regression algorithms
20
age estimation
16
machine learning
12
learning algorithms
12
prediction accuracy
12
algorithms
9
estimation frameworks
8
accuracy brain
8
independent test
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!