Electrode Materials for Chronic Electrical Microstimulation.

Adv Healthc Mater

Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, Pittsburgh, PA, 15213, USA.

Published: June 2021

Electrical microstimulation has enabled partial restoration of vision, hearing, movement, somatosensation, as well as improving organ functions by electrically modulating neural activities. However, chronic microstimulation is faced with numerous challenges. The implantation of an electrode array into the neural tissue triggers an inflammatory response, which can be exacerbated by the delivery of electrical currents. Meanwhile, prolonged stimulation may lead to electrode material degradation., which can be accelerated by the hostile inflammatory environment. Both material degradation and adverse tissue reactions can compromise stimulation performance over time. For stable chronic electrical stimulation, an ideal microelectrode must present 1) high charge injection limit, to efficiently deliver charge without exceeding safety limits for both tissue and electrodes, 2) small size, to gain high spatial selectivity, 3) excellent biocompatibility that ensures tissue health immediately next to the device, and 4) stable in vivo electrochemical properties over the application period. In this review, the challenges in chronic microstimulation are described in detail. To aid material scientists interested in neural stimulation research, the in vitro and in vivo testing methods are introduced for assessing stimulation functionality and longevity and a detailed overview of recent advances in electrode material research and device fabrication for improving chronic microstimulation performance is provided.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8257249PMC
http://dx.doi.org/10.1002/adhm.202100119DOI Listing

Publication Analysis

Top Keywords

chronic microstimulation
12
chronic electrical
8
electrical microstimulation
8
electrode material
8
material degradation
8
chronic
5
microstimulation
5
stimulation
5
electrode
4
electrode materials
4

Similar Publications

Seizure network characterization by functional connectivity mapping and manipulation.

Neurophotonics

January 2025

Weill Cornell Medicine, Department of Neurological Surgery, New York, United States.

Significance: Despite the availability of various anti-seizure medications, nearly 1/3 of epilepsy patients experience drug-resistant seizures. These patients are left with invasive surgical options that do not guarantee seizure remission. The development of novel treatment options depends on elucidating the complex biology of seizures and brain networks.

View Article and Find Full Text PDF

Transmitting meaningful information into brain circuits by electronic means is a challenge facing brain-computer interfaces. A key goal is to find an approach to inject spatially structured local current stimuli across swaths of sensory areas of the cortex. Here, we introduce a wireless approach to multipoint patterned electrical microstimulation by a spatially distributed epicortically implanted network of silicon microchips to target specific areas of the cortex.

View Article and Find Full Text PDF

Dynamic changes in the structure and function of brain mural cells around chronically implanted microelectrodes.

Biomaterials

April 2025

Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA. Electronic address:

Integration of neural interfaces with minimal tissue disruption in the brain is ideal to develop robust tools that can address essential neuroscience questions and combat neurological disorders. However, implantation of intracortical devices provokes severe tissue inflammation within the brain, which requires a high metabolic demand to support a complex series of cellular events mediating tissue degeneration and wound healing. Pericytes, peri-vascular cells involved in blood-brain barrier maintenance, vascular permeability, waste clearance, and angiogenesis, have recently been implicated as potential perpetuators of neurodegeneration in brain injury and disease.

View Article and Find Full Text PDF

Integration of neural interfaces with minimal tissue disruption in the brain is ideal to develop robust tools that can address essential neuroscience questions and combat neurological disorders. However, implantation of intracortical devices provokes severe tissue inflammation within the brain, which requires a high metabolic demand to support a complex series of cellular events mediating tissue degeneration and wound healing. Pericytes, peri-vascular cells involved in blood-brain barrier maintenance, vascular permeability, waste clearance, and angiogenesis, have recently been implicated as potential perpetuators of neurodegeneration in brain injury and disease.

View Article and Find Full Text PDF

Objective: The sensory ventroposterior (VP) thalamic nuclei display a mediolateral somatotopic organization (respectively head, arm, and leg). We studied this somatotopy using directional VP deep brain stimulation (DBS) in patients treated for chronic neuropathic pain.

Methods: Six patients with central (four) or peripheral (two) neuropathic pain were treated by VP DBS using directional leads in a prospective study (clinicaltrials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!