A Photovoltaic Self-Powered Gas Sensor Based on All-Dry Transferred MoS /GaSe Heterojunction for ppb-Level NO Sensing at Room Temperature.

Adv Sci (Weinh)

Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China.

Published: July 2021

Traditional gas sensors are facing the challenge of low power consumption for future application in smart phones and wireless sensor platforms. To solve this problem, self-powered gas sensors are rapidly developed in recent years. However, all reported self-powered gas sensors are suffering from high limit of detection (LOD) toward NO gas. In this work, a photovoltaic self-powered NO gas sensor based on n-MoS /p-GaSe heterojunction is successfully prepared by mechanical exfoliation and all-dry transfer method. Under 405 nm visible light illumination, the fabricated photovoltaic self-powered gas sensors show a significant response toward ppb-level NO with short response and recovery time and high selectivity at room temperature (25 °C). It is worth mentioning that the LOD toward NO of this device is 20 ppb, which is the lowest of the reported self-powered room-temperature gas sensors so far. The discussed devices can be used as building blocks to fabricate more functional Internet of things devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8292907PMC
http://dx.doi.org/10.1002/advs.202100472DOI Listing

Publication Analysis

Top Keywords

self-powered gas
20
gas sensors
20
photovoltaic self-powered
12
gas
8
gas sensor
8
sensor based
8
room temperature
8
reported self-powered
8
sensors
5
self-powered
5

Similar Publications

In recent years, liquid-solid triboelectric nanogenerators (L-S TENGs) have been rapidly developed in the field of liquid energy harvesting and self-powered sensing. This is due to a number of advantages inherent in the technology, including the low cost of fabricated materials, structural diversity, high charge-energy conversion efficiency, environmental friendliness, and a wide range of applications. As liquid phase dielectric materials typically used in L-S TENG, a variety of organic and inorganic single-phase liquids, including distilled water, acidic solutions, sodium chloride solutions, acetone, dimethyl sulfoxide, and acetonitrile, as well as paraffinic oils, have been used in experiments.

View Article and Find Full Text PDF

Ultra-broadband photodetectors (UB-PDs) are essential in medical applications, public safety monitoring, and various other fields. However, developing UB-PDs covering multiple bands from ultraviolet to medium infrared remains a challenge due to material limitations. Here, a mixed-dimensional heterojunction composed of 2D WS/monodisperse hexagonal stacking (MHS) 3D PdTe particles on 3D Si is proposed, capable of detecting light from 365 to 9600 nm.

View Article and Find Full Text PDF

Electronic devices cover a large subset of daily life gadgets which use power to run, hence increasing the load of the energy needs and indirectly impacting greenhouse gas emissions. Smart electrochromic windows provide a solution to this through remarkable energy saving by adjusting optical behavior depending on the environmental conditions. Since the electrochromic windows also need power to run, a self-powered electrochromic panel will be a better solution.

View Article and Find Full Text PDF

Light-Directed Self-Powered Metal-Organic Framework Based Nanorobots for Deep Tumor Penetration.

Adv Mater

December 2024

Frontiers Science Centre for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.

Effective intratumoral distribution of anticancer agents with good tumor penetration is of great practical importance for oncotherapy. How to break the limitation of traditional passive drug delivery relying on blood circulatory system into solid tumors remains a challenge. Herein, a light-directed self-powered nanorobot based on zirconium-based porphyrin metal-organic framework (MOF) is reported for smart delivery of chemodrug and photosensitizer for deep tumor penetration.

View Article and Find Full Text PDF

With the increasing demand for food safety monitoring, the development of efficient, convenient, and green gas sensors has become a current research hotspot. Triboelectric nanogenerator (TENG) as a triethylamine sensor is a cutting-edge strategy for detection without the need for an additional power source. In this study, synthesized WO/MXene materials were prepared and bilayer thin films of carbon quantum dots (CPDs)-WO/MXene TENG.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!