The aim of this study was to benchmark the accuracy of the VIrtual Phantom Epid dose Reconstruction (VIPER) software for pre-treatment dosimetric verification of multiple-target stereotactic radiosurgery (SRS). VIPER is an EPID-based method to reconstruct a 3D dose distribution in a virtual phantom from in-air portal images. Validation of the VIPER dose calculation was assessed using several MLC-defined fields for a 6 MV photon beam. Central axis percent depth doses (PDDs) and output factors were measured with an ionization chamber in a water tank, while dose planes at a depth of 10 cm in a solid flat phantom were acquired with radiochromic films. The accuracy of VIPER for multiple-target SRS plan verification was benchmarked against Monte Carlo simulations. Eighteen multiple-target SRS plans designed with the Eclipse treatment planning system were mapped to a cylindrical water phantom. For each plan, the 3D dose distribution reconstructed by VIPER within the phantom was compared with the Monte Carlo simulation, using a 3D gamma analysis. Dose differences (VIPER vs. measurements) generally within 2% were found for the MLC-defined fields, while film dosimetry revealed gamma passing rates (GPRs) ≥95% for a 3%/1 mm criteria. For the 18 multiple-target SRS plans, average 3D GPRs greater than 93% and 98% for the 3%/2 mm and 5%/2 mm criteria, respectively. Our results validate the use of VIPER as a dosimetric verification tool for pre-treatment QA of single-isocenter multiple-target SRS plans. The method requires no setup time on the linac and results in an accurate 3D characterization of the delivered dose.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8200437 | PMC |
http://dx.doi.org/10.1002/acm2.13269 | DOI Listing |
Rep Pract Oncol Radiother
December 2024
Department of Radiation Oncology, Kagawa University Hospital, Kagawa, Japan.
J Radiat Res
December 2024
Medical Physics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
Biomed Phys Eng Express
August 2024
Department of Radiation Oncology, Kaiser Permanente, Dublin, CA, United States of America.
. Single-isocenter-multiple-target technique for stereotactic radiosurgery (SRS) can reduce treatment duration but risks compromised dose coverage due to potential rotational errors. Clustering targets into two groups can reduce isocenter-target distances, mitigating the impact of rotational uncertainty.
View Article and Find Full Text PDFJ Appl Clin Med Phys
October 2024
Radiation oncology department, Texas Oncology, Houston, Texas, USA.
Purpose: The aim of this study is to find optimal gantry, collimator, and couch angles for performing single isocenter, multiple target stereotactic radiosurgery (SIMT-SRS). Nineteen angle sets were tested across seven linear accelerators for radiation-isocenter coincidence and off-isocenter coincidence. The off-isocenter Winston-Lutz test was performed to evaluate the accuracy of isocenter alignment for each angle set, and optimal angle sets as well as maximum off-isocenter distance to target for each angle set was determined.
View Article and Find Full Text PDFPhys Med
August 2024
Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia; St George Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia; School of Physics, University of Sydney, Camperdown, NSW, Australia.
Purpose: This study aimed to analyse correlations between planning factors including plan geometry and plan complexity with robustness to patient setup errors.
Methods: Multiple-target brain stereotactic radiosurgery (SRS) plans were obtained through the Trans-Tasman Radiation Oncology Group (TROG) international treatment planning challenge (2018). The challenge dataset consisted of five intra-cranial targets with a 20 Gy prescription.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!