The ever-growing needs for renewable energy demand the pursuit of batteries with higher energy/power output. A thick electrode design is considered as a promising solution for high-energy batteries due to the minimized inactive material ratio at the device level. Most of the current research focuses on pushing the electrode thickness to a maximum limit; however, very few of them thoroughly analyze the effect of electrode thickness on cell-level energy densities as well as the balance between energy and power density. Here, a realistic assessment of the combined effect of electrode thickness with other key design parameters is provided, such as active material fraction and electrode porosity, which affect the cell-level energy/power densities of lithium-LiNi Mn Co O (Li-NMC622) and lithium-sulfur (Li-S) cells as two model battery systems, is provided. Based on the state-of-the-art lithium batteries, key research targets are quantified to achieve 500 Wh kg /800 Wh L cell-level energy densities and strategies are elaborated to simultaneously enhance energy/power output. Furthermore, the remaining challenges are highlighted toward realizing scalable high-energy/power energy-storage systems.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202101275DOI Listing

Publication Analysis

Top Keywords

electrode thickness
12
energy-storage systems
8
energy/power output
8
cell-level energy
8
energy densities
8
electrode
5
fundamental understanding
4
understanding engineering
4
engineering design
4
design high-performance
4

Similar Publications

The composition of the metal-polymer friction pair is carefully considered for interacting with water and hydrogen, ensuring the metals electrode process potential remains below waters in a neutral medium. Simultaneously, adherence to defined chemical composition ratios for the metal-polymer materials is crucial. This analysis is conducted under conditions of thermal stabilization, characterized by a minimal temperature gradient across the rim thickness within an equivalent thermal field.

View Article and Find Full Text PDF

The electrochemical cutting technique, utilizing electrolyte flushing through micro-hole arrays in the radial direction of a tube electrode, offers the potential for cost-effective and high-surface-integrity machining of large-thickness, straight-surface structures of difficult-to-cut materials. However, fabricating the array of jet micro-holes on the tube electrode sidewall remains a significant challenge, limiting the broader application of this technology. To enhance the efficiency and quality of machining these jet micro-holes on the tube sidewall, a helical electrode electrochemical drilling method assisted by anode vibration has been proposed.

View Article and Find Full Text PDF

Laser Welding of Micro-Wire Stent Electrode as a Minimally Invasive Endovascular Neural Interface.

Micromachines (Basel)

December 2024

Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Academy for Engineering & Technology, Fudan University, Shanghai 200433, China.

Minimally invasive endovascular stent electrodes are an emerging technology in neural engineering, designed to minimize the damage to neural tissue. However, conventional stent electrodes often rely on resistive welding and are relatively bulky, restricting their use primarily to large animals or thick blood vessels. In this study, the feasibility is explored of fabricating a laser welding stent electrode as small as 300 μm.

View Article and Find Full Text PDF

Organic photodetectors (OPDs) are key devices for monitoring vital signs, such as heart rate and blood oxygen level. For realizing the long-term measurement of biosignals, stable operation is essential. To improve the stability of OPDs, it is important to analyze each layer to understand the degradation mechanism.

View Article and Find Full Text PDF

Innovative Method for Reliable Measurement of PEM Water Electrolyzer Component Resistances.

Small Methods

January 2025

Forschungszentrum Juelich GmbH, Institute of Energy Technologies, IET-4, Electrochemical Process Engineering, 52425, Juelich, Germany.

Understanding the sheet resistance of porous electrodes is essential for improving the performance of polymer electrolyte membrane (PEM) water electrolyzers and related technologies. Despite its importance, existing methods often fail to provide reliable and comprehensive data, especially for porous materials with complex morphologies and non-uniform thicknesses. This study introduces a robust and straightforward method for determining the sheet resistance of porous electrodes using a novel probe concept based on industrial printed circuit board (PCB) technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!