Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aberrant deposition of the extracellular matrix (ECM) causes fibrosis and leads to ECM stiffening. This fibrotic ECM provides biological and biophysical stimulations to alter cell activity and drive progression of fibrosis. As an emerging discipline, mechanobiology aims to access the impact of both these cues on cell behavior and relates the reciprocity of mechanical and biological interactions; it incorporates concepts from different fields, like biology and physics, to help study the mechanical and biological facets of fibrosis extensively. A useful experimental platform in mechanobiology is decellularized ECM (dECM), which mimics the native microenvironment more accurately than standard 2D culture techniques as its composition includes similar ECM protein components and stiffness. dECM, therefore, generates more reliable results that better recapitulate in vivo fibrosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-1382-5_18 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!