Alzheimer's disease (AD) and other neurodegenerative diseases are characterized by chronic neuroinflammation and a reduction in brain energy metabolism. An important role has emerged for small, non-coding RNA molecules known as microRNAs (miRNAs) in the pathophysiology of many neurodegenerative disorders. As epigenetic regulators, miRNAs possess the capacity to regulate and fine tune protein production by inhibiting translation. Several miRNAs, which include miR-146a, are elevated in the brain, CSF, and plasma of AD patients. miR-146a participates in pathways that regulate immune activation and has several mRNA targets which encode for proteins involved in cellular energy metabolism. An additional role for extracellular vesicles (EVs) has also emerged in the progression AD, as EVs can transfer functionally active proteins and RNAs from diseased to healthy cells. In the current study, we exposed various cell types present within the CNS to immunomodulatory molecules and observed significant upregulation of miR-146a expression, both within cells and within their secreted EVs. Further, we assessed the effects of miR-146a overexpression on bioenergetic function in primary rat glial cells and found significant reductions in oxidative phosphorylation and glycolysis. Lastly, we correlated miR-146a expression levels within various regions of the AD brain to disease staging and found significant, positive correlations. These novel results demonstrate that the modulation of miR-146a in response to neuroinflammatory stimuli may mediate the loss of mitochondrial integrity and function in cells, thereby contributing to the progression of beta-amyloid and tau pathology in the AD brain. Multiple inflammatory stimuli can upregulate miRNA-146a expression within neurons, mixed glial cells, and brain endothelial cells, which is either retained within these cells or released from them as extracellular vesicle cargo. The upregulation of miR-146a disrupts cellular bioenergetics in mixed glial cells. This mechanism may play a critical role in the neuroinflammatory response observed during Alzheimer's disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8611101 | PMC |
http://dx.doi.org/10.1007/s11481-021-09999-y | DOI Listing |
Plant Physiol Biochem
January 2025
Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India. Electronic address:
Nitric oxide synthases (NOSs) are heme-based monooxygenases that catalyze the NADPH-dependent oxidation of L-arginine to produce NO and L-citrulline. Over the past five years, the identification and characterization of NOS homologs in cyanobacteria have significantly advanced our understanding of these enzymes. However, the precise mechanisms through which NOS-derived NO influences nitrogen metabolism remain incompletely elucidated.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
Melatonin (Mel) is a tryptophan-derived (N-acetyl-5-methoxytryptamine) molecule. In the present study, role of Mel in the regulation of various anaplerotic enzymes is discussed in relation to N metabolism and H-ATPase activity in mung bean under Cd stress. The application of Mel to the Cd-stressed mung bean seedlings was remarkable in improving the activity of hexokinase (35.
View Article and Find Full Text PDFSci Adv
January 2025
School of GeoSciences, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK.
Whether metazoan diversification during the Cambrian Radiation was driven by increased marine oxygenation remains highly debated. Repeated global oceanic oxygenation events have been inferred during this interval, but the degree of shallow marine oxygenation and its relationship to biodiversification and clade appearance remain uncertain. To resolve this, we interrogate an interval from ~527 to 519 Ma, encompassing multiple proposed global oceanic oxygenation events.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Clinical Science, SUS, Division of Islet Cell Physiology, University of Lund, Malmö, Sweden.
The impact of islet neuronal nitric oxide synthase (nNOS) on glucose-stimulated insulin secretion (GSIS) is less understood. We investigated this issue by performing simultaneous measurements of the activity of nNOS versus inducible NOS (iNOS) in GSIS using isolated murine islets. Additionally, the significance of extracellular NO on GSIS was studied.
View Article and Find Full Text PDFPLoS One
January 2025
CFD Research Corporation, Huntsville, AL, United States of America.
Purpose: To assess physiological metrics during the use of a commercially available bilateral active ankle exoskeleton during a challenging military-relevant task and if use of the exoskeleton during this task influences: metabolic load, physiological measures or rate of perceived exertion.
Methods: Nine healthy volunteers (5M, 4F) completed this randomized cross-over design trial, with a baseline visit and two randomized test sessions (with/without the exoskeleton). Variables included impact on time to exhaustion during walking on a treadmill at varying speeds and gradients (0-15%) at 26.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!