Motor attempt (MA)/motor imagery (MI)-based brain-computer interface (BCI) is a newly developing rehabilitation technology for motor impairment. This study aims to explore the relationship between electroencephalography sensorimotor rhythm and motor impairment to provide reference for a BCI design. Twenty-eight stroke survivors with varying levels of motor dysfunction and spasticity status in the subacute or chronic stage were enrolled in the study to perform MA and MI tasks. Event-related desynchronization (ERD)/event-related synchronization (ERS) during and immediately after motor tasks were calculated. The Fugl-Meyer assessment scale (FMA) and the modified Ashworth scale (MAS) were applied to characterize upper-limb motor dysfunction and spasticity. There was a positive correlation between FMA total scores and ERS in the contralesional hemisphere in the MI task (< .05) and negative correlations between FMA total scores and ERD in both hemispheres in the MA task (< .05). Negative correlations were found between MAS scores of wrist flexors and ERD in the ipsilesional hemisphere (< .05) in the MA task. It suggests that motor dysfunction may be more correlated to ERS in the MI task and to ERD in the MA task while spasticity may be more correlated to ERD in the MA task.

Download full-text PDF

Source
http://dx.doi.org/10.1177/15500594211019917DOI Listing

Publication Analysis

Top Keywords

motor impairment
12
sensorimotor rhythm
8
motor
8
rhythm motor
8
upper-limb motor
8
motor dysfunction
8
dysfunction spasticity
8
relation sensorimotor
4
motor attempt/imagery
4
attempt/imagery upper-limb
4

Similar Publications

Dysregulation of GABAergic inhibition is associated with pathological pain. Consequently, enhancement of GABAergic transmission represents a potential analgesic strategy. However, therapeutic potential of current GABA agonists and modulators is limited by unwanted side effects.

View Article and Find Full Text PDF

Background: Motor imagery is the mental representation of a movement without physical execution. When motor imagery is performed to enhance motor learning and performance, participants must reach a temporal congruence between the imagined and actual movement execution. Identifying factors that can influence this capacity could enhance the effectiveness of motor imagery programs.

View Article and Find Full Text PDF

TDP43 autoregulation gives rise to dominant negative isoforms that are tightly controlled by transcriptional and post-translational mechanisms.

Cell Rep

January 2025

Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA; Graduate Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, MI, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA. Electronic address:

The nuclear RNA-binding protein TDP43 is integrally involved in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Previous studies uncovered N-terminal TDP43 isoforms that are predominantly cytosolic in localization, prone to aggregation, and enriched in susceptible spinal motor neurons. In healthy cells, however, these shortened (s)TDP43 isoforms are difficult to detect in comparison to full-length (fl)TDP43, raising questions regarding their origin and selective regulation.

View Article and Find Full Text PDF

In motor adaptation, learning is thought to rely on a combination of several processes. Two of these are implicit learning (incidental updating of the movement due to sensory prediction error) and explicit learning (intentional adjustment to reduce target error). The explicit component is thought to be fast adapting, while the implicit one is slow.

View Article and Find Full Text PDF

Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disease primarily affecting motor neurons, leading to progressive muscle atrophy and paralysis. This review explores the role of Schwann cells in ALS pathogenesis, highlighting their influence on disease progression through mechanisms involving demyelination, neuroinflammation, and impaired synaptic function. While Schwann cells have been traditionally viewed as peripheral supportive cells, especially in motor neuron disease, recent evidence indicates that they play a significant role in ALS by impacting motor neuron survival and plasticity, influencing inflammatory responses, and altering myelination processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!