Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The regulation of cell-cell adhesions in space and time plays a crucial role in cell biology, especially in the coordination of multicellular behavior. Therefore, tools that allow for the modulation of cell-cell interactions with high precision are of great interest to a better understanding of their roles and building tissue-like structures. Herein, the green light-responsive protein CarH is expressed at the plasma membrane of cells as an artificial cell adhesion receptor, so that upon addition of its cofactor vitamin B specific cell-cell interactions form and lead to cell clustering in a concentration-dependent manner. Upon green light illumination, the CarH based cell-cell interactions disassemble and allow for their reversion with high spatiotemporal control. Moreover, these artificial cell-cell interactions impact cell migration, as observed in a wound-healing assay. When the cells interact with each other in the presence of vitamin B in the dark, the cells form on a solid front and migrate collectively; however, under green light illumination, individual cells migrate randomly out of the monolayer. Overall, the possibility of precisely controlling cell-cell interactions and regulating multicellular behavior is a potential pathway to gaining more insight into cell-cell interactions in biological processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adbi.202000199 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!