Sin Nombre virus (SNV) is a zoonotic virus that is highly pathogenic to humans. The deer mouse, Peromyscus maniculatus, is the primary host of SNV, and SNV prevalence in P. maniculatus is an important indicator of human disease risk. Because the California Channel Islands contain permanent human settlements, receive hundreds of thousands of visitors each year, and can have extremely high densities of P. maniculatus, surveillance for SNV in island P. maniculatus is important for understanding the human risk of zoonotic disease. Despite the importance of surveillance on these heavily utilized islands, SNV prevalence (i.e. the proportion of P. maniculatus that test positive to antibodies to SNV) has not been examined in the last 13-27 years. We present data on 1,610 mice sampled for four consecutive years (2014-2017) on five of the California Channel Islands: East Anacapa, Santa Barbara, Santa Catalina, San Nicolas, and San Clemente. Despite historical data indicating SNV-positive mice on San Clemente and Santa Catalina, we detected no SNV-positive mice on these islands, suggesting very low prevalence or possible loss of SNV. Islands historically free of SNV (East Anacapa, Santa Barbara, and San Nicolas) remained free of SNV, suggesting that rates of pathogen introduction from other islands and/or the mainland are low. Although continued surveillance is warranted to determine whether SNV establishes on these islands, our work helps inform current human disease risk in these locations and suggests that SNV prevalence on these islands is currently very low.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/zph.12855 | DOI Listing |
iScience
December 2024
Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA.
Two-pore domain, outwardly rectifying potassium (TOK) channels are exclusively expressed in fungi. Human fungal pathogen TOK channels are potential antifungal targets, but TOK channel modulation in general is poorly understood. Here, we discovered that TOK (CaTOK) is regulated by extracellular pH, in contrast to TOK channels from other fungal species tested.
View Article and Find Full Text PDFJ Neural Eng
December 2024
University of California San Francisco, 513 Parnassus Avenue, S362, SAN FRANCISCO, San Francisco, 94143, CHINA.
Objective: Electroencephalography (EEG) and Magnetoencephalography (MEG) are widely used non-invasive techniques in clinical and cognitive neuroscience. However, low spatial resolution measurements, partial brain coverage by some sensor arrays, as well as noisy sensors could result in distorted sensor topographies resulting in inaccurate reconstructions of underlying brain dynamics. Solving these problems has been a challenging task, This paper proposes a robust framework based on electromagnetic source imaging for interpolation of unknown or poor quality EEG/MEG measurements.
View Article and Find Full Text PDFACS Nano
December 2024
McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States.
The applications of polymeric membranes have grown rapidly compared to traditional separation technologies due to their energy efficiency and smaller footprint. However, their potential is not fully realized due, in part, to their heterogeneity, which results in a "permeability-selectivity" trade-off for most membrane applications. Inspired by the intricate architecture and excellent homogeneity of biological membranes, bioinspired and biomimetic membranes (BBMs) aim to emulate biological membranes for practical applications.
View Article and Find Full Text PDFNat Struct Mol Biol
December 2024
Department of Physiology, University of California, San Francisco, San Francisco, CA, USA.
Calcium (Ca)-activated ion channels and lipid scramblases in the transmembrane protein 16 (TMEM16) family are structurally related to mechanosensitive ion channels in the TMEM63 and transmembrane channel-like (TMC) families. Members of this structurally related superfamily share similarities in gating transitions and serve a wide range of physiological functions, which is evident from their disease associations. The TMEM16, TMEM63 and TMC families include members with important functions in the cell membrane and/or intracellular organelles such as the endoplasmic reticulum, membrane contact sites, endosomes and lysosomes.
View Article and Find Full Text PDFACS Nano
December 2024
Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.
Biological organisms engineer peptide sequences to fold into membrane pore proteins capable of performing a wide variety of transport functions. Synthetic de novo-designed membrane pores can mimic this approach to achieve a potentially even larger set of functions. Here we explore water, solute, and ion transport in three de novo designed β-barrel membrane channels in the 5-10 Å pore size range.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!