The insertion of fluorine atoms and/or fluoroalkyl groups can lead to many beneficial effects in biologically active molecules, such as enhanced metabolic stability, bioavailability, lipophilicity, and membrane permeability, as well as a strengthening of protein-ligand binding interactions. However, this "magic effect" of fluorine atom(s) insertion can often be meaningless. Taking advantage of the wide range of data coming from the quest for carbonic anhydrase (CA) fluorinated inhibitors, this Minireview attempts to give "general guidelines" on how to wisely insert fluorine atom(s) within an inhibitor moiety to precisely enhance or disrupt ligand-protein interactions, depending on the target location of the fluorine substitution in the ligand. Multiple approaches such as ITC, kinetic and inhibition studies, X-ray crystallography, and NMR spectroscopy are useful in dissecting single binding contributions to the overall observed effect. The exploitation of innovative directions made in the field of protein and ligand-based fluorine NMR screening is also discussed to avoid misconduct and finely tune the exploitation of selective fluorine atom insertion in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202103211 | DOI Listing |
Molecules
December 2024
Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, 60, Będzińska, 41-200 Sosnowiec, Poland.
Cathinone and its synthetic derivatives belong to organic compounds with narcotic properties. Their structural diversity and massive illegal use create the need to develop new analytical methods for their identification in different matrices. NMR spectroscopy is one of the most versatile methods for identifying the structure of organic substances.
View Article and Find Full Text PDFMolecules
December 2024
School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, China.
The development of lanthanide-organic frameworks (Ln-MOFs) using for luminescence sensing and selective gas adsorption applications is of great significance from an energy and environmental perspective. This study reports the solvothermal synthesis of a fluorine-functionalized 3D microporous Tb-MOF with a face-centered cubic () topology constructed from hexanuclear clusters (TbO) bridged by fdpdc ligands, formulated as {[Tb(fdpdc)(-OH)(HO)]·4DMF} (), (fdpdc = 3-fluorobiphenyl-4,4'-dicarboxylate). Complex displays a 3D framework with the channel of 7.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Institute of Nano Science and Technology, Sector 81, Knowledge City, Manauli, Mohali, Mohali, Punjab, 140306, INDIA.
Two-dimensional (2D) materials hold great promise for the next-generation optoelectronics applications, many of which, including solar cell, rely on the efficient dissociation of exciton into free charge carriers. However, photoexcitation in atomically thin 2D semiconductors typically produces exciton with a binding energy of ~500 meV, an order of magnitude larger than thermal energy at room temperature. This inefficient exciton dissociation can limit the efficiency of photovoltaics.
View Article and Find Full Text PDFJ Mol Graph Model
January 2025
School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China. Electronic address:
MXenes quantum dots (QDs), including NbC, NbCO, and NbCF, are emerging materials with exceptional structural, electronic, and optical properties, making them highly suitable for biomedical applications. This study investigates the structural optimization, stability, electronic properties, and drug-loading potential of these QDs using fluorouracil (Flu) as a model drug. Structural analyses show that the functionalization of NbC with O and F atoms enhances stability, with binding energies (BEs) of 7.
View Article and Find Full Text PDFEur J Med Chem
December 2024
Laboratory of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic. Electronic address:
Familial dysautonomia is a debilitating congenital neurodegenerative disorder with no causative therapy. It is caused by a homozygous mutation in ELP1 gene, resulting in the production of the transcript lacking exon 20. The compounds studied as potential treatments include the clinical candidate kinetin, a plant hormone from the cytokinin family.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!