2D Self-assembled molecular networks and on-surface reactivity under nanoscale lateral confinement.

Chem Soc Rev

Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.

Published: May 2021

Supramolecular self-assembly at surfaces provides a pathway for building chemically customized interfaces. Over the last three decades, research on the role of key parameters such as temperature, solute concentration, and molecular design has enabled a steady increase in the complexity of self-assembled molecular networks (SAMNs) that can thus be created. However, the structure and quality of SAMNs is often determined during the early stages of nucleation and growth. To study and influence self-assembly processes at this deterministic length scale, spatial confinement of molecular adsorbates to well-defined surface patterns with nanoscale lateral dimensions offers exciting possibilities. The aim of this tutorial review is to give an overview of the various ways in which confinement impacts SAMN formation, and how we can use that knowledge to direct assemblies towards desired structures. The possibility to exploit confinement for improved control over on-surface reactions is also contemplated.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cs01338bDOI Listing

Publication Analysis

Top Keywords

self-assembled molecular
8
molecular networks
8
nanoscale lateral
8
networks on-surface
4
on-surface reactivity
4
reactivity nanoscale
4
confinement
4
lateral confinement
4
confinement supramolecular
4
supramolecular self-assembly
4

Similar Publications

Self-Assembled Oligomers Facilitate Amino Acid-Driven CO Capture at the Air-Aqueous Interface.

J Phys Chem B

January 2025

Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.

Direct air capture of CO using amino acid absorbents, such as glycine or sarcosine, is constrained by the relatively slow mass transfer of CO through the air-aqueous interface. Our recent study showed a marked improvement in CO capture by introducing CO-permeable oligo-dimethylsiloxane (ODMS-MIM) oligomers with cationic (imidazolium, MIM) headgroups. In this work, we have employed all-atom molecular dynamics simulations in combination with subensemble analysis using network theory to provide a detailed molecular picture of the behavior of CO and the glycinate anions (Gly) at the ODMS-MIM decorated air-aqueous interfaces.

View Article and Find Full Text PDF

Enantiomer-Dependent Supramolecular Antibacterial Therapy for Drug-Resistant Bacterial Keratitis.

Langmuir

January 2025

National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.

Bacteria have the potential to exhibit divergent stereochemical preferences for different levels of chiral structures, including from molecule, supramolecule, to nanomicroscale helical structure. Accordingly, the structure-activity relationship between chirality and bactericidal activity remains uncertain. In this study, we seek to understand the multivalent molecular chirality effect of chiral supramolecular polymers on antibacterial activity.

View Article and Find Full Text PDF

Commercial hard carbon (HC) anode suffers from unexpected interphase chemistry rooted in the parasitic reactions between surface oxygen-functional groups and ester-based electrolytes. Herein, an innovative strategy is proposed to regulate interphase chemistry by tailoring targeted functional groups on the HC surface, where highly active undesirable oxygen-functional groups are skillfully converted into a Si-O-Si molecular layer favorable for anchoring anions. Then, an inorganic/organic hybrid solid electrolyte interphase with low interfacial charge transfer resistance and enhanced cycling durability is constructed successfully.

View Article and Find Full Text PDF

Organelle targeting is a useful approach in drug development for cancer therapy. Peptide amphiphiles are good candidates for targeting specific organelles because they can be engineered into a wide range of molecular structures, enabling customization for specific functional needs. We have developed a peptide amphiphile, C16-(EY)3, that can respond to tyrosine kinase activity and undergo phosphorylation inside cancer cells.

View Article and Find Full Text PDF

Cota is a lipidated dual GLP-1 and Glucagon receptor agonist that was investigated for the treatment of various metabolic diseases, it is designed for once daily subcutaneous administration. Invasive daily injections often result in poor patient compliance with chronic disease, and here, we demonstrate an innovative strategy of encapsulating reversible cota self-assembled fibers within an in-situ forming depot of low molecular weight poly(lactic-co-glycolic) acid (LWPLGA) for sustained delivery GLP-1 and Glucagon receptor agonist with controlled burst release. This could be a suitable alternative to other sustained delivery strategies for fibrillating peptides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!