On the impact force analysis of two-leg landing with a flexed knee.

Comput Methods Biomech Biomed Engin

Department of Mechanical Engineering, University of Tehran, Tehran 1417466191, Iran.

Published: December 2021

This article looks into the effects of the initial knee flexion angle at the contact time on the peak of the impulsive lower limb forces during landing, and how these effects are related to muscular activities. The impact dynamics of drop landing is studied via a musculoskeletal model with eight Hill-type lower-limb muscles. A method is proposed for the representation of two landing strategies: landing with high and low joint stiffness. Then, in each landing strategy, the effect of the initial knee flexion angle on the peak ground reaction force (GRF), the peak knee ligaments force and the peak tibiofemoral contact force is investigated by considering different initial contact postures. It is observed that while landing with a flexed knee decreases the peak GRF in both landing strategies, it decreases the peak tibiofemoral and knee ligaments forces only in landing with low joint stiffness. Specifically, by increasing the initial knee flexion from 0° to 70°, the peak tibiofemoral and knee ligaments forces decrease monotonically by 54% and 82%, in landing with low joint stiffness. For high joint stiffness, however, as the initial knee flexion increases from 10° to 70°, the peak tibiofemoral force is seen to increase monotonically by 42% and the peak knee ligaments force is seen to have a non-monotonic behavior, first decreasing by 42%, and then, increasing by 250%. These results can be considered in training landing strategies to reduce the risk of knee injury.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10255842.2021.1925257DOI Listing

Publication Analysis

Top Keywords

initial knee
16
knee flexion
16
joint stiffness
16
knee ligaments
16
peak tibiofemoral
16
landing strategies
12
low joint
12
landing
11
knee
11
peak
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!