In this paper we describe the design, development and functionality of a haptic force-matching device. This device measures precise sensorimotor perception by determining a subject's ability to successfully attenuate incoming sensory signals. Sensory attenuation provides a novel method of investigating psychophysical aspects of perception and may help to formulate neurocognitive models that may account for maladaptive interoceptive processing. Several similar custom-made devices have been reported in the literature; however, a clear description of the mechanical engineering necessary to build such a device is lacking. We present, in detail, the hardware and software necessary to build such a device. Subjects (N = 25) were asked to match a target force on their right index finger, first by pressing directly on their finger with their other hand, then by controlling the device through an external potentiometer to control the force (indirectly) though a torque motor. In the direct condition, we observed a consistent overestimation of the force reproduced; mean force error 0.50 newtons (standard error = 0.04). In the slider condition we observed a more accurate, yet small, underestimation of reproduced force: -0.30 newtons (standard error = 0.03).

Download full-text PDF

Source
http://dx.doi.org/10.3758/s13428-021-01605-6DOI Listing

Publication Analysis

Top Keywords

design development
8
development functionality
8
functionality haptic
8
haptic force-matching
8
force-matching device
8
sensory attenuation
8
build device
8
condition observed
8
reproduced force
8
newtons standard
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!