QTNs significantly associated to nine mineral content in grains of common bean were identified. The accumulation of favorable alleles was associated with a gradually increasing nutrient content in the grain. Biofortification is one of the strategies developed to address malnutrition in developing countries, the aim of which is to improve the nutritional content of crops. The common bean (Phaseolus vulgaris L.), a staple food in several African and Latin American countries, has excellent nutritional attributes and is considered a strong candidate for biofortification. The objective of this study was to identify genomic regions associated with nutritional content in common bean grains using 178 Mesoamerican accessions belonging to a Brazilian Diversity Panel (BDP) and 25,011 good-quality single nucleotide polymorphisms. The BDP was phenotyped in three environments for nine nutrients (phosphorus, potassium, calcium, magnesium, copper, manganese, sulfur, zinc, and iron) using four genome-wide association multi-locus methods. To obtain more accurate results, only quantitative trait nucleotides (QTNs) that showed repeatability (i.e., those detected at least twice using different methods or environments) were considered. Forty-eight QTNs detected for the nine minerals showed repeatability and were considered reliable. Pleiotropic QTNs and overlapping genomic regions surrounding the QTNs were identified, demonstrating the possible association between the deposition mechanisms of different nutrients in grains. The accumulation of favorable alleles in the same accession was associated with a gradually increasing nutrient content in the grain. The BDP proved to be a valuable source for association studies. The investigation of different methods and environments showed the reliability of markers associated with minerals. The loci identified in this study will potentially contribute to the improvement of Mesoamerican common beans, particularly carioca and black beans, the main groups consumed in Brazil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00122-021-03859-2 | DOI Listing |
Food Chem
December 2024
Centro para Investigaciones en Granos y Semillas, Universidad de Costa Rica, 11501 San Pedro, San José, Costa Rica. Electronic address:
Common beans (Phaseolus vulgaris L.) are widely consumed legumes in Latin America and Africa, valued for their nutritional compounds and antioxidants. Their high polyphenol content contributes to the antioxidant properties, with bioactive compounds showing antifungal and antimycotoxin effects.
View Article and Find Full Text PDFCommun Biol
December 2024
Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
The beta-rhizobial strain Paraburkholderia phymatum STM815 is noteworthy for its wide host range in nodulating legumes, primarily mimosoids (over 50 different species) but also some papilionoids. It cannot, however, nodulate soybean (Glycine max [L.] Merr.
View Article and Find Full Text PDFSci Rep
December 2024
School of Big Data, Fuzhou University of International Studies and Trade, Fuzhou, 350202, China.
The traditional machine learning methods such as decision tree (DT), random forest (RF), and support vector machine (SVM) have low classification performance. This paper proposes an algorithm for the dry bean dataset and obesity levels dataset that can balance the minority class and the majority class and has a clustering function to improve the traditional machine learning classification accuracy and various performance indicators such as precision, recall, f1-score, and area under curve (AUC) for imbalanced data. The key idea is to use the advantages of borderline-synthetic minority oversampling technique (BLSMOTE) to generate new samples using samples on the boundary of minority class samples to reduce the impact of noise on model building, and the advantages of K-means clustering to divide data into different groups according to similarities or common features.
View Article and Find Full Text PDFJ Enzyme Inhib Med Chem
December 2025
Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea.
β-lactams have been the most successful antibiotics, but the rise of multi-drug resistant (MDR) bacteria threatens their effectiveness. Serine β-lactamases (SBLs), among the most common causes of resistance, are classified as A, C, and D, with numerous variants complicating structural and substrate spectrum comparisons. This study compares representative SBLs of these classes, focusing on the substrate-binding pocket (SBP).
View Article and Find Full Text PDFJ Food Sci
December 2024
Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang, College of Life Sciences, China Jiliang University, Hangzhou, P.R. China.
Phytohemagglutinin (PHA), a natural tetramer comprising PHA-E and PHA-L subunits that preferentially bind to red and white blood cells, respectively, constitutes a significant antinutritional and allergenic factor in common bean seeds. The accurate measurement of PHA content is a prerequisite for ensuring food safety inspections and facilitating genetic improvements in common bean cultivars with reduced PHA levels. Currently, mainstream methods for PHA quantification involve hemagglutination assays and immunodetection, but these methods often require fresh animal blood and lack specificity and accuracy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!