Soft tissue remodeling is a sophisticated process that sequentially provides dynamic biological signals to guide cell behavior. However, capturing these signals within hydrogel and directing over time has still been unrealized owing to the poor comprehension of physiological processes. Here, a bio-mimicking hydrogel is designed via thiol-ene click reaction to capture the early physical signal triggered by inflammation, and the chemical signals provided with chemokine and natural adhesion sites, which guaranteed the precise soft tissue remodeling. This bio-mimicking hydrogel efficiently facilitated cell anchoring, migration, and invasion in the 3D matrix due to the permissive space and the interaction with integrin receptors. Besides, the covalently grafted chemokine-like peptide is optimal for colonization and functional differentiation of endothelial cells through a HIF-1α dependent signal pathway. Furthermore, the early polarization of macrophages, collagen deposition and angiogenesis in rat acute wound model, and the increased blood perfusion in mouse skin flap model have confirmed that the bio-mimicking hydrogel realized precise soft tissue remodeling and opens new avenues for the phased repair of different tissues such as nerve, myocardium, and even bone.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8134719 | PMC |
http://dx.doi.org/10.1016/j.bioactmat.2021.04.039 | DOI Listing |
Biomater Adv
December 2024
School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea; Department of Organic Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea; Institute of Advanced Organic Materials, Pusan National University, Busan 46241, Republic of Korea. Electronic address:
Hydrogel-based scaffolds have been widely investigated for their use in tissue engineering to accelerate tissue regeneration. However, replicating the physiological microenvironments of tissues with appropriate biological cues remains challenging. Recent advances in gradient hydrogels have transformed tissue-engineering research by providing precise structures that mimic the extracellular matrix of natural tissues.
View Article and Find Full Text PDFHeliyon
August 2024
Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
Hydrogels containing antimicrobial materials have emerged as attractive platforms for wound treatment in the past decade due to their favorable bio-mimicking properties, excellent modulation of bacterial infection, and ability to minimize bacterial resistance. Herein, a hybrid combination of polyvinyl alcohol (PVA), hyperbranched poly L-lysine (L), tannic acid decorated AgNPs (AgTA NPs), loaded with Allantoin (Alla) is used to fabricate PLAg-Alla hydrogel dressing via the freeze-thaw method without use of any chemical cross-linker. The PLAg-Alla hydrogel possesses a great structure, is biodegradable, and safe, and exhibits high antibacterial potential, all required for efficient wound healing.
View Article and Find Full Text PDFAdv Colloid Interface Sci
June 2024
Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City 807, Taiwan; Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan. Electronic address:
Repairing and regenerating damaged tissues or organs, and restoring their functioning has been the ultimate aim of medical innovations. 'Reviving healthcare' blends tissue engineering with alternative techniques such as hydrogels, which have emerged as vital tools in modern medicine. Additive manufacturing (AM) is a practical manufacturing revolution that uses building strategies like molding as a viable solution for precise hydrogel manufacturing.
View Article and Find Full Text PDFiScience
April 2023
Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands.
Environmental stiffness is a crucial determinant of cell function. There is a long-standing quest for reproducible and (human matrix) bio-mimicking biomaterials with controllable mechanical properties to unravel the relationship between stiffness and cell behavior. Here, we evaluate methacrylated human recombinant collagen peptide (RCPhC1-MA) hydrogels as a matrix to control 3D microenvironmental stiffness and monitor cardiac cell response.
View Article and Find Full Text PDFFront Mol Neurosci
March 2022
Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, United States.
Electrical excitability of cells, tissues and organs is a fundamental phenomenon in biology and physiology. Signatures of excitability include transient currents resulting from a constant or varying voltage gradient across compartments. Interestingly, such signatures can be observed with non-biologically-derived, macromolecular systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!