Graphene-based polymer composites are gaining interest as a modish class of substance that holds promising angles on diverse applications. In this work, Graphene Oxide (GO) based Polyvinyl Alcohol (PVA) nanocomposites (PVA-GO) have been prepared by employing a facile solution casting method. Low concentrations of GO nanofiller (0.25%, 0.50%, 0.75%, and 1.0%) were used and the result of the use of them over the distinct substantial characteristics of the nanocomposites was evaluated. The different features of the as-synthesized nanocomposites such as optical, structural, chemical, and thermal properties were identified by UV-Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), and Thermo-gravimetric analysis (TGA), respectively. From the structural analysis of the crystallinity of the nanocomposite it is evident that a reduction in crystallinity caused by the amalgamation of the GO nanofiller. FTIR study shows improved interaction between the GO nanofiller and PVA matrix. The incorporation of GO was found to reduce the optical band gap of the nanocomposite both for the direct and indirect transition. The Urbach energy of the nanocomposite increases with the increase of the GO concentration suggests the formation of localized states causing a reduction in the optical band gap. PVA-GO nanocomposites with improved and tunable physical properties synthesized from a simple and economic route may pave a new horizon for polymer-based optoelectronic devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8120943 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2021.e06983 | DOI Listing |
Heliyon
December 2024
Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia.
The pristine phases SS1(ZnO), SS2(MnO), and SS3 (CuO) photocatalysts and mixed phases of ZnO-based nanocomposites were synthesized by the sol-gel method. Whereas SS4 (g-CN) was prepared through polymerization of urea. The synthesized photocatalysts were characterized using TGA-DTA, XRD, DRS, PL, DLS, FTIR, SEM, TEM, and HRTEM.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
South China University of Technology, South China Advanced Institute for Soft Matter Science and Technology, South China Advanced Institute for Soft Matter Science and Technology, 510640, Guangzhou, CHINA.
Nanoimprint lithography (NIL) has been broadly applied in the fabrication of nano-patterned polymer films for cost-efficiency and high through-put; however, the intrinsic tradeoff between mechanical strength and residual stress of polymer films significantly limits the NIL resolution while the harsh processing conditions limit its versatile applications to different substrates. Herein, 1 nm metal oxide cluster, phosphotungstic acid (PTA), is used to complexed with polyvinyl alcohol (PVA) for high-resolution NIL that can be operated at large-scale and mild conditions. The ultra-small size of PTA enables dense supramolecular interaction with PVA for the diminished crystallinity and accelerated chain dynamics that help relax the residual stress during film casting.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
University of Jeddah, College of Science, Department of Physical Sciences, Jeddah, Saudi Arabia. Electronic address:
This study explores the synthesis and characterization of bio-nanocomposite films composed of HPMC/PVA/CMC blends with molybdenum trioxide (MoO₃) nanofillers at varying concentrations. X-ray diffraction (XRD) analysis confirms the structural integrity of the polymer matrix, with MoO₃ enhancing crystallinity as its concentration increases. Fourier-transform infrared spectroscopy (FTIR) reveals strong hydrogen bonding between MoO₃ and the polymer matrix, leading to improved interfacial compatibility.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India. Electronic address:
Bacterial infections significantly delay the physiological wound healing process and can cause further damage to the wound region. In the current work, we aim to design titanium dioxide nanoparticles (TiO NPs) incorporated with chitosan (Chi) and poly (vinyl alcohol) (PVA) film using the casting method and to study their potential for faster wound healing. The prepared TiO NPs were analyzed for physicochemical properties, and TEM results showed an average particle size of 39.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
College of Medicine, Sharjah University, Sharjah, United Arab Emirates.
Background: Diabetic foot ulcers present a formidable challenge due to colonization by biofilm-forming microorganisms, heightened oxidative stress, and continuous wound maceration caused by excessive exudation.
Methods: To address these issues, we developed a robust, stretchable, electro-conductive, self-healing, antioxidant, and antibiofilm hydrogel. This hydrogel was synthesized through the crosslinking of polyvinyl alcohol (PVA) and chitosan (CH) with boric acid.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!