Colonoscopy is the gold standard for colorectal cancer diagnosis; however, limited instrument dexterity and no sensor feedback can hamper procedure safety and acceptance. We propose a soft robotic sleeve to provide sensor feedback and additional actuation capabilities to improve safety during navigation in colonoscopy. The robot can be mounted around current endoscopic instrumentation as a disposable "add-on", avoiding the need for dedicated or customized instruments and without disrupting current surgical workflow. We focus on design, finite element analysis, fabrication, and experimental characterization and validation of the soft robotic sleeve. The device integrates soft optical sensors to monitor contact interaction forces between the colon and the colonoscope and soft robotic actuators that can be automatically deployed if excessive force is detected, to guarantee pressure redistribution on a larger contact area of the colon. The system can be operated by a surgeon via a graphic user interface that displays contact force values and enables independent or coordinated pressurization of the soft actuators upon demand, in case deemed necessary to aid navigation or distend colon tissue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8132950 | PMC |
http://dx.doi.org/10.1109/lra.2021.3073651 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!