Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Many current strategies for inducing an immune response rely on the production of an antigenic protein. Such methods can be problematic if the folding of the antigenic protein is incorrect. To avoid this problem, we propose a method based on grafting specific regions of the chosen antigenic protein onto biocompatible polymeric matrices, so that they can mimic portions of the antigenic protein. These regions are selected following the criterion according to which they are not folded, are exposed to the solvent and are not already present in the human body, so that they are not recognized by the immune system as self. Regions are selected using the primary sequence of the protein and, where possible, its tertiary structure. The application of this strategy to the Spike protein of SARS-CoV-2 is presented.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8131536 | PMC |
http://dx.doi.org/10.3389/fmolb.2021.658687 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!