Toxicogenomics opens novel opportunities for hazard assessment by utilizing computational methods to map molecular events and biological processes. In this study, the transcriptomic and immunopathological changes associated with airway exposure to a total of 28 engineered nanomaterials (ENM) are investigated. The ENM are selected to have different core (Ag, Au, TiO, CuO, nanodiamond, and multiwalled carbon nanotubes) and surface chemistries (COOH, NH, or polyethylene glycosylation (PEG)). Additionally, ENM with variations in either size (Au) or shape (TiO) are included. Mice are exposed to 10 µg of ENM by oropharyngeal aspiration for 4 consecutive days, followed by extensive histological/cytological analyses and transcriptomic characterization of lung tissue. The results demonstrate that transcriptomic alterations are correlated with the inflammatory cell infiltrate in the lungs. Surface modification has varying effects on the airways with amination rendering the strongest inflammatory response, while PEGylation suppresses toxicity. However, toxicological responses are also dependent on ENM core chemistry. In addition to ENM-specific transcriptional changes, a subset of 50 shared differentially expressed genes is also highlighted that cluster these ENM according to their toxicity. This study provides the largest in vivo data set currently available and as such provides valuable information to be utilized in developing predictive models for ENM toxicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8132046 | PMC |
http://dx.doi.org/10.1002/advs.202004588 | DOI Listing |
Toxics
November 2024
National Toxicology Program Interagency Center for Evaluation of Alternative Toxicological Methods (NICEATM), Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27711, USA.
Skin sensitization is a significant concern for chemical safety assessments. Traditional animal assays often fail to predict human responses accurately, and ethical constraints limit the collection of human data, necessitating a need for reliable in silico models of skin sensitization prediction. This study introduces HuSSPred, an in silico tool based on the Human Predictive Patch Test (HPPT).
View Article and Find Full Text PDFMolecules
October 2024
Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
To avoid the critical problems of effective drugs not being carried to their targeted cancers and their quantity and location not being sensed in situ, this work presents a completely new innovative strategy to achieve both smart cancer targeting (SCT) and super-sensitive sensing (SSS), where one drug carrier works for effective drug loading and release. Herein, malignant melanoma treatment is used as an example of reliable detection and effective therapy. We report two characteristic dumbbell-like nano-micelles and spherical-like nano-micelles of hyaluronan induced by the Eu/Tb complexes for effective drug loading and release, respectively.
View Article and Find Full Text PDFMicrobiol Spectr
October 2024
Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
Local delivery of antibiotics as prophylaxis for prosthetic joint infections (PJIs) is frequently used during total hip replacement surgery. Morselized bone allograft impregnated with vancomycin and tobramycin () could provide effective prophylaxis against bacteria commonly associated with PJIs. In this study, the concentrations of antibiotics released by bone allograft impregnated with were determined by using an bioassay system entailing measuring inhibition zone diameters caused by antibiotic-impregnated bone chips cast in agar against standard curves.
View Article and Find Full Text PDFSaudi Pharm J
November 2024
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
The impact of Engineered nanomaterials (ENMs) (i.e., Zinc Oxide nanoparticles (ZnO NPs)) on human health has been investigated at high and unrealistic exposure levels, overlooking the potential indirect harm of subtoxic and long exposures.
View Article and Find Full Text PDFSci Total Environ
October 2024
Department of Civil and Environmental Engineering, Northwestern University, USA. Electronic address:
Engineered nanomaterials (ENMs) can alter surface properties of cells and disturb cellular functions and gene expression through direct and indirect contact, exerting unintended impacts on human and ecological health. However, the effects of interactions among environmental factors, such as light, surrounding media, and ENM mixtures, on the mechanisms of ENM toxicity, especially at sublethal concentrations, are much less explored and understood. Therefore, we evaluated cell viability and outer membrane permeability of E.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!