Forming tight interaction with both Purkinje and granule cells (GCs), Bergmann glia (BG) are essential for cerebellar morphogenesis and neuronal homeostasis. However, how BG act in this process is unclear without comprehensive transcriptome landscape of BG. Here, high temporal-resolution investigation of transcriptomes with FACS-sorted BG revealed the dynamic expression of genes within given functions and pathways enabled BG to assist neural migration and construct neuron-glia network. It is found that the peak time of GCs migration (P7-10) strikingly coincides with the downregulation of extracellular matrix (ECM) related genes, and the disruption of which by Setdb1 ablation at P7-10 in BG leads to significant migration defect of GCs emphasizing the criticality of Nfix-Setdb1 mediated H3K9me3 repressive complex for the precise regulation of GCs migration in vivo. Thus, BG's transcriptomic landscapes offer an insight into the mechanism by which BG are in depth integrated in cerebellar neural network.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8132163PMC
http://dx.doi.org/10.1002/advs.202003164DOI Listing

Publication Analysis

Top Keywords

bergmann glia
8
granule cells
8
gcs migration
8
migration
5
temporarily epigenetic
4
epigenetic repression
4
repression bergmann
4
glia regulates
4
regulates migration
4
migration granule
4

Similar Publications

Differential Expression of GABA Receptor-Related Genes in Alzheimer's Disease and the Positive Regulatory Role of Aerobic Exercise-From Genetic Screening to D-gal-induced AD-like Pathology Model.

Neuromolecular Med

December 2024

Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, 410012, China.

Alzheimer's disease (AD) is the most common neurodegenerative disorder. The neuropathology of AD appears in the hippocampus. The purpose of this work was to reveal key differentially expressed genes (DEGs) in the hippocampus of AD patients and healthy individuals.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a central nervous system degenerative disease with a stealthy onset and a progressive course characterized by memory loss, cognitive dysfunction, and abnormal psychological and behavioral symptoms. However, the pathogenesis of AD remains elusive. An increasing number of studies have shown that oligodendrocyte progenitor cells (OPCs) and oligodendroglial lineage cells (OLGs), especially OPCs and mature oligodendrocytes (OLGs), which are derived from OPCs, play important roles in the pathogenesis of AD.

View Article and Find Full Text PDF

Background: Glial cells exhibit distinct transcriptional responses to β-amyloid pathology in Alzheimer's disease (AD). While sophisticated single-cell based methods have revealed heterogeneous glial subpopulations in the human AD brain, the histological localization of these multicellular responses to AD pathology has not been fully characterized due to the loss of spatial information. Here, we combined spatial transcriptomics (ST) with immunohistochemistry to explore the molecular mechanisms in the neuritic plaque niche.

View Article and Find Full Text PDF

Background: A recent case report described an individual who was a homozygous carrier of the APOE3 Christchurch (APOE3ch) mutation and resistant to autosomal dominant Alzheimer's Disease (AD) caused by a PSEN1-E280A mutation. Whether APOE3ch contributed to the protective effect remains unclear.

Method: We generated a humanized APOE3ch knock-in mouse and crossed it to an amyloid-β (Aβ) plaque-depositing model.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden.

Background: Alzheimer's disease (AD) is associated with synaptic and memory dysfunction. A pathological hallmark of the disease is reactive astrogliosis, with reactive astrocytes surrounding amyloid plaques in the brain. Astrocytes have also been shown to be actively involved in disease progression, nevertheless, mechanistic information about their role in synaptic transmission during AD pathology is lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!