Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Graphene oxide (GO), which has many oxygen functional groups, is a promising candidate for use in moisture-responsive sensors and actuators due to the strong water-GO interaction and the ultrafast transport of water molecules within the stacked GO sheets. In the last 5 years, moisture-responsive actuators based on GO have shown distinct advantages over other stimuli-responsive materials and devices. Particularly, inspired by nature organisms, various moisture-enabled soft robots have been successfully developed via rational assembly of the GO-based actuators. Herein, the milestones in the development of moisture-responsive soft robots based on GO are summarized. In addition, the working mechanisms, design principles, current achievement, and prospects are also comprehensively reviewed. In particular, the GO-based soft robots are at the forefront of the advancement of automatable smart devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8132057 | PMC |
http://dx.doi.org/10.1002/advs.202002464 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!