In cystic fibrosis (CF) therapy, the recent approval of CF-transmembrane conductance regulator (CFTR) channel modulators is considered to be the major breakthrough. However, the current first-line approach based mainly on pulmonary function to measure effects of the novel therapy, tested by forced expiratory volumes in one second (FEV), provides restricted sensitivity to detect early structural damages. Accordingly, there is a need for new sensitive surrogate parameters. Most interestingly, these should quantify inflammation that precedes a decline of pulmonary function. We present a novel method assessing inflammatory markers in the upper airways' epithelial lining fluid (ELF) obtained by nasal lavage (NL). In contrast to broncho-alveolar lavage, ELF sampling by NL is an attractive method due to its limited invasiveness which allows repeated analyses, even performed in a home-based setting. In a longitudinal cohort study (ClinicalTrials.gov, Identifier: NCT02311140), we assessed changes of inflammatory mediators in 259 serially obtained nasal lavages taken up to every second day before and during therapy with ivacaftor from ten CF patients carrying a G551D mutation. Patients were trained to sample NL-fluid at home, to immediately freeze and transfer chilled secretions to centers. Neutrophil Elastase, Interleukins IL-1β, IL-6 and IL-8 in NL were quantified. During 8-12 weeks of ivacaftor-treatment, median values of IL-1β and IL-6 significantly declined 2.29-fold (2.97→1.30 pg/mL), and 1.13-fold (6.48→5.72 pg/mL), respectively. In parallel, sweat tests and pulmonary function improved considerably. This is the first study assessing changes of airway inflammation on a day-to-day basis in CF patients receiving a newly administered CFTR-modulator therapy. It proves a decline of airway inflammation during ivacaftor-therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8131546 | PMC |
http://dx.doi.org/10.3389/fimmu.2021.642180 | DOI Listing |
Am J Vet Res
January 2025
Department of Large Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA.
Objective: To investigate the disposition of enrofloxacin and its active metabolite, ciprofloxacin, in plasma, pulmonary epithelial lining fluid (PELF), peritoneal fluid, and CSF in horses following IV administration of enrofloxacin at doses of 5 mg/kg and 7.5 mg/kg of body weight.
Methods: 6 healthy, mature mares were randomly assigned to receive a single dose of enrofloxacin at either 5 mg/kg or 7.
J Toxicol Pathol
January 2025
The Institute of Environmental Toxicology, 4321 Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan.
Cystic degeneration (CD) in the liver is a cyst-like lesion composed of one or more pseudocysts lacking lining cells, occurring spontaneously in rats older than 12 months, with a male predilection. In this study, 32 CDs were identified in 23 out of 104 non-treated, control male Sprague-Dawley rats from two combined chronic toxicity and carcinogenicity studies with agrochemicals. They were examined histologically, histochemically, and immunohistochemically to assess the pathogenesis and pathological significance of CD, focusing on pseudocapillarization in aged rat liver.
View Article and Find Full Text PDFEnviron Health (Wash)
January 2025
Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
Indoor environment and health have drawn public attention worldwide. However, the joint health effects and mechanisms of exposure to different types of indoor environmental factors remain unclear. We established an exploratory panel study on indoor environment and health effects among young adults in China (the China IEHE Study) to comprehensively investigate 3M issues, including multiple indoor environmental factors, multiple health effects, and multiple omics methods for mechanism exploration.
View Article and Find Full Text PDFEnviron Health (Wash)
January 2025
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
Air pollution is increasingly recognized as a significant health risk, yet our understanding of its underlying chemical and physiological mechanisms remains incomplete. Fine particulate matter (PM) and ozone (O) interact with biomolecules in intracellular and microenvironments, such as the epithelial lining fluid (ELF), leading to the generation of reactive oxygen species (ROS). These ROS trigger cellular inflammatory responses and oxidative stress, contributing to a spectrum of diseases affecting the respiratory, cardiovascular, and central nervous systems.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA.
Natural olfactory systems possess remarkable sensitivity and precision beyond what is currently achievable by engineered gas sensors. Unlike their artificial counterparts, noses are capable of distinguishing scents associated with mixtures of volatile molecules in complex, typically fluctuating environments and can adapt to changes. This perspective examines the multifaceted biological principles that provide olfactory systems their discriminatory prowess, and how these ideas can be ported to the design of electronic noses for substantial improvements in performance across metrics such as sensitivity and ability to speciate chemical mixtures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!