Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
One path toward identifying effective and easily accessible antifungals is to repurpose commonly used drugs. Amiloride, a widely used diuretic, inhibits different isoforms of Na/H exchangers, Na channels, and Na/Ca exchangers. Here, we found that amiloride had poor antifungal activity against isolates of prompting the examination of the amiloride analog, HMA [5-(,-hexamethylene)amiloride]. HMA possesses strong activity against Na/H exchangers (NHEs) and little K-associated toxicity since HMA has only minimal inhibitory effects toward epithelial sodium channels (ENaC), the diuretic and antikaliuretic target of amiloride. Although HMA produced a robust dose-dependent growth inhibition of several fungal isolates, susceptibility assays revealed modest MICs against isolates of . A checkerboard dilution strategy resulted in fractional inhibitory concentrations (FIC) < 0.5, suggesting that HMA displays synergy with several antifungal azole drugs including posaconazole, voriconazole, and ketoconazole. Itraconazole and ravuconazole showed moderate synergy with HMA across all tested fungal isolates. In combination with HMA, ravuconazole had MICs of 0.004-0.008 μg/ml, a ∼16-fold reduction compared to MICs of ravuconazole when used alone and significantly more effective than the overall MIC (0.25 μg/ml) reported for ravuconazole against 541 clinical isolates of . In combination with azole drugs, MICs of HMA ranged from 3.2 μM (1 μg/ml) to 26 μM (16 μg/ml), HMA was not cytotoxic at concentrations ≤ 8 μg/ml, but MICs were above the reported HMA K of 0.013-2.4 μM for various Na/H exchangers. Our results suggest that HMA has limited potential as a monotherapy and may have additional targets in fungal/yeast cells since strains lacking NHEs remained sensitive to HMA. We determined that the hydrophobic substituent at the 5-amino group of HMA is likely responsible for the observed antifungal activity and synergy with several azoles since derivatives with bulky polar substitutions showed no activity against , indicating that other 5-substituted HMA derivatives could possess stronger antifungal activity. Moreover, substitution of other positions around the pyrazine core of HMA has not been investigated but could reveal new leads for antifungal drug development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8133316 | PMC |
http://dx.doi.org/10.3389/fmicb.2021.673035 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!