A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Study of Novel Exploratory Tools, Digital Technologies, and Central Nervous System Biomarkers to Characterize Unipolar Depression. | LitMetric

AI Article Synopsis

  • Digital technologies can objectively detect symptoms of depression, allowing for the collection of extensive relevant data that traditional methods may miss.
  • A study was conducted with 20 participants having unipolar depression and 20 healthy controls to test the effectiveness of several digital technologies as potential diagnostic tools.
  • Various digital assessments were used, both in-clinic and through mobile apps, including mood self-assessments, cognitive tests, behavioral monitoring, and advanced neural analysis techniques.

Article Abstract

Digital technologies have the potential to provide objective and precise tools to detect depression-related symptoms. Deployment of digital technologies in clinical research can enable collection of large volumes of clinically relevant data that may not be captured using conventional psychometric questionnaires and patient-reported outcomes. Rigorous methodology studies to develop novel digital endpoints in depression are warranted. We conducted an exploratory, cross-sectional study to evaluate several digital technologies in subjects with major depressive disorder (MDD) and persistent depressive disorder (PDD), and healthy controls. The study aimed at assessing utility and accuracy of the digital technologies as potential diagnostic tools for unipolar depression, as well as correlating digital biomarkers to clinically validated psychometric questionnaires in depression. A cross-sectional, non-interventional study of 20 participants with unipolar depression (MDD and PDD/dysthymia) and 20 healthy controls was conducted at the Centre for Human Drug Research (CHDR), the Netherlands. Eligible participants attended three in-clinic visits (days 1, 7, and 14), at which they underwent a series of assessments, including conventional clinical psychometric questionnaires and digital technologies. Between the visits, there was at-home collection of data through mobile applications. In all, seven digital technologies were evaluated in this study. Three technologies were administered via mobile applications: an interactive tool for the self-assessment of mood, and a cognitive test; a passive behavioral monitor to assess social interactions and global mobility; and a platform to perform voice recordings and obtain vocal biomarkers. Four technologies were evaluated in the clinic: a neuropsychological test battery; an eye motor tracking system; a standard high-density electroencephalogram (EEG)-based technology to analyze the brain network activity during cognitive testing; and a task quantifying bias in emotion perception. Our data analysis was organized by technology - to better understand individual features of various technologies. In many cases, we obtained simple, parsimonious models that have reasonably high diagnostic accuracy and potential to predict standard clinical outcome in depression. This study generated many useful insights for future methodology studies of digital technologies and proof-of-concept clinical trials in depression and possibly other indications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8136319PMC
http://dx.doi.org/10.3389/fpsyt.2021.640741DOI Listing

Publication Analysis

Top Keywords

digital technologies
32
unipolar depression
12
psychometric questionnaires
12
technologies
11
digital
10
technologies potential
8
methodology studies
8
depressive disorder
8
healthy controls
8
mobile applications
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!