Identification of new sources of resistance to resistance-breaking isolates of tomato spotted wilt virus.

Saudi J Biol Sci

Antalya Agriculture Production Consultancy and Marketting Company, Antalya, Turkey.

Published: May 2021

The tomato as both a fresh consumption and industrial product is one of the most profitable vegetables and has a large cultivation area in the world. Parallel to intense production activities, Tomato Spotted Wilt Virus (TSWV), like viral diseases, results in significant economic losses every year. Use of resistant cultivars is the most efficient and environmental-friendly method of fighting against these diseases. This study was conducted to develop new tomato genetic resources resistant to TSWV because of the resistance breaking (RB) isolates that were determined in tomato cultivation areas. In this study, a total of 40 tomato materials including 15 lines, 9 commercial varieties and 16 wild genotypes were by tested with molecular and biological testing methods. Mechanical inoculation method was used for biological testing and SCAR marker was used in molecular analysis. , , , and , LA0716, LA1028, LA1777, LA2744 and LA4110 genotypes were found as resistant against breaking isolates of Tomato Spotted Wilt Virus. These genotypes may be a good resistance source for the future breeding studies in tomato.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8117038PMC
http://dx.doi.org/10.1016/j.sjbs.2021.02.053DOI Listing

Publication Analysis

Top Keywords

tomato spotted
12
spotted wilt
12
wilt virus
12
tomato
8
isolates tomato
8
breaking isolates
8
biological testing
8
identification sources
4
sources resistance
4
resistance resistance-breaking
4

Similar Publications

Background: Entomopathogenic fungi are increasingly used as bio-inoculants to enhance crop growth and resistance. When applied to rhizosphere soil, they interact with resident soil microbes, which can affect their ability to colonize and induce resistance in plants as well as modify the structure of the resident soil microbiome, either directly through interactions in the rhizosphere or indirectly, mediated by the plant. The extent to which such direct versus indirect interactions between bio-inoculants and soil microbes impact microbe-induced resistance in crops remains unclear.

View Article and Find Full Text PDF

Background: Light-emitting diodes (LEDs) are being used in controlled environments to enhance crop production and pest management with most studies focusing on continuous treatments (applied throughout the entire daytime or nighttime period). Here, we tested the hypothesis that providing tomato plants with timed LED regimes (daily 3-h doses of red, blue, or far-red LED) during the day or at night may affect their traits (leaf reflectance indices, element composition, and phenolic profile), performance of two-spotted spider mites (Tetranychus urticae) (TSSM), and a species of predatory mite (Phytoseiulus persimilis).

Results: Nighttime LED regimes significantly altered leaf element composition: red LED increased K levels, blue LED enhanced Mg levels, and far-red LED enhanced Mn and Cu and reduced Zn levels.

View Article and Find Full Text PDF

Two phylogenetically unrelated viruses transmitted by different insect vectors, tomato spotted wilt virus (TSWV) and tomato yellow leaf curl virus (TYLCV), are major threats to tomato and other vegetable production. Although co-infections of TSWV and TYLCV on the same host plant have been reported on numerous occasions, there is still lack of research attempting to elucidate the mechanisms underlying the relationship between two viruses when they coexist in the same tomato or other plants. After assessing the effect of four TSWV-coded proteins on suppressing TYLCV in TSWV N transgenic Nicotiana benthamiana seedlings, the TSWV N protein proved to be effective in reducing TYLCV quantity and viral symptoms.

View Article and Find Full Text PDF

Bacillus endophytes for sustainable management of tomato spotted wilt virus and yield production.

Pest Manag Sci

December 2024

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.

Background: Tomato-spotted wilt virus (TSWV) from the Tospovirus genus affects over 1000 plant species, including key crops, and traditional control methods often prove inadequate. This study investigates the effectiveness of Bacillus amyloliquefaciens and Bacillus subtilis in reducing TSWV infection, enhancing plant growth, and strengthening defense in Nicotiana benthamiana. The aim is to assess Bacillus as a sustainable biocontrol alternative, offering an eco-friendly solution for managing TSWV disease in agriculture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!