The liver plays a central role in the postpartum (PP) energy metabolism of the transition dairy cow; however, studies describing the liver metabolome during this period were lacking. The aim of the presented study was therefore to compare the alterations in the liver and blood metabolome of transition dairy cows. For this purpose, an on-farm trial with 80 German Holstein cows (mean lactation number: 3.9; range: 2-9) was performed, with thorough documentation of clinical traits and clinical chemistry, as well as production data. Liver biopsies and blood samples were collected at d 14 (mean: 12 d, range: 1-26 d) antepartum (AP), d 7 (7, 4-13) and 28 (28, 23-34; mean, earliest-latest) PP for targeted mass spectroscopy-based metabolomics analysis using the AbsoluteIDQ p180 kit (Biocrates Life Sciences). Statistical analysis was performed using multivariate (partial least squares discriminant analysis) as well as univariate methods (linear mixed model). Multivariate data analysis of the liver metabolome revealed 3 different metabotypes (A = medium, B = minor, C = large alterations in the liver metabolome profile between AP and PP). In metabotype C, an increase of almost all acylcarnitines, lysophosphatidylcholines (lysoPC), sphingomyelins, and some phosphatidylcholines (PC, mainly at 7 d PP) was observed after calving. In contrast to metabotype C, the clinical data of the metabotype B animals indicated a higher PP lipomobilization and occurrence of transition cow diseases. The liver metabolome profile of these animals most likely mirrors a failure of adaptation to the PP state. This strong occurrence of metabotypes was much less pronounced in the blood metabolome. Additionally, differences in metabolic patterns were observed across the transition period when comparing liver and blood matrices (e.g., in different biogenic amines, acylcarnitines and sphingolipids). In summary, the blood samples at 7 d PP showed lower acylcarnitines and PC, with minor alterations and a heterogeneous pattern in AA, biogenic amines, and sphingomyelins compared with 14 d AP. In contrast to 7 d PP, the blood samples at 28 PP revealed an increase in several AA, lysoPC, PC, and sphingomyelins in comparison to the AP state, irrespective of the metabotype. In the liver biopsies metabotype B differed from metabotype C animals ante partum by following metabolites: higher α aminoadipic acid, lower AA, serotonin, taurine, and symmetric dimethylarginine levels, lower or higher concentrations of certain acylcarnitines (higher: C2, C3, C5, C4:1; lower: C12:1, C14:1-OH, C16:2), and lower lysoPC (a C16:0, C18:0, C20:3, C20:4) and hexose levels. In blood samples, fewer differences were observed, with lower serotonin, acylcarnitine C16:2, lysoPC (a C16:0, C17:0, C18:0 and C18:1), PC aa C38:0, and PC ae C42:2. The results show that the use of only the blood metabolome to assess liver metabolism may be hampered by the fact that blood profiles are influenced by the metabolism of many organs, and metabolomics analysis from liver biopsies is a more suitable method to identify distinct metabotypes. Future studies should investigate the stability and reproducibility of the metabotype and phenotypes observed, and the possible predictive value of the metabolites already differing AP between metabotype B and C.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2020-19056 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!