Head-first compressive impacts occur in motorcycle crashes and may result in serious to fatal neck injuries to riders. Equipment to protect the riders' necks from these injuries are available in the market; however, their effectiveness in reducing injury risk is not clear, either due to the lack of scientific evidences or assessment with any prevalently accepted standard. This paper presents a finite element ligamentous neck model, developed as a computationally efficient tool, for future use in the computational phase of assessment process of neck protective equipment. The 3D cervical spine was generated using the mean statistical dimensions of vertebrae and proposed constitutive models, provided in the scientific literature. Ligaments, for the vertebra-vertebra and Hybrid III head-vertebra ligamentous joints, were introduced with the aid of published anatomical descriptions. For validation, the response of the head-neck system under compressive loadings and the flexion-extension bending stiffness of the neck at the segment level were compared against experimental data. The advanced CORrelation and Analysis (CORA) algorithm was applied on the validation responses to assess biofidelity of the model. The results indicate that the model is functional and meets ISO/TR9790 standard as a "good" biofidelic model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/09544119211018112 | DOI Listing |
J Orthop Surg Res
December 2024
Center for Joint Surgery, Southwest Hospital, Army Medical University, Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
Purpose: This study aims to investigate the suitable surgical strategies for applying TaBw01 porous tantalum rod across different stages of osteonecrosis of the femoral head (ONFH).
Methods: TaBw01 tantalum rods were fabricated using type FTaY-1 tantalum powder via the foam impregnation-sintering method. Mechanical testing with the Instron 8801 universal testing machine and finite element analysis (FEA) assessed single tantalum rod implantation and impaction bone grafting combined with rod implantation.
Bone Joint Res
January 2025
Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, Pennsylvania, USA.
Aims: The "2 to 10% strain rule" for fracture healing has been widely interpreted to mean that interfragmentary strain greater than 10% predisposes a fracture to nonunion. This interpretation focuses on the gap-closing strain (axial micromotion divided by gap size), ignoring the region around the gap where osteogenesis typically initiates. The aim of this study was to measure gap-closing and 3D interfragmentary strains in plated ovine osteotomies and associate local strain conditions with callus mineralization.
View Article and Find Full Text PDFSci Rep
December 2024
School of Petroleum and Natural Gas Engineering, Southwest Petroleum University, Chengdu, 610500, China.
Accurately determining the initial acoustic field excitation load of a piezoelectric ultrasonic probe is essential for simulating electrical signals and calculating wall thickness during ultrasonic internal inspection of pipelines. A new method for determining the initial excitation load of the acoustic field is proposed, incorporating the focusing effect of the curved surface of pipelines on the ultrasonic signal from the piezoelectric ultrasonic probe. Finite element models were established for the new and old methods using COMSOL software, facilitating the analysis of the initial acoustic field distribution and associated electrical signal characteristics.
View Article and Find Full Text PDFMed Biol Eng Comput
December 2024
School of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, People's Republic of China.
Finite element human body models (HBMs) are the primary method for predicting human biological responses in vehicle collisions, especially personalized HBMs that allow accounting for diverse populations. Yet, creating personalized HBMs from a single image is a challenging task. This study addresses this challenge by providing a framework for HBM personalization, starting from a single image used to estimate the subject's skin point cloud, the skeletal point cloud, and the relative positions of the skeletons.
View Article and Find Full Text PDFSci Rep
December 2024
School of Physics, Nanjing University of Science and Technology, Nanjing, 210094, China.
Molding has been widely used to manufacture thermoset composite structures in the aerospace and automotive industries owing to its efficiency in reducing the number of parts and the manufacturing cost. For such molded composite parts, the degree-of-cure curve is generally used to evaluate the solidification of the resin. Nevertheless, in simulation of cure is not the cure model itself, but rather knowing the initial conditions such as fiber volume fraction, initial curing degree, convective boundary conditions etc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!