Stress minimization for lattice structures. Part I: Micro-structure design.

Philos Trans A Math Phys Eng Sci

CMAP, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France.

Published: July 2021

Lattice structures are periodic porous bodies which are becoming popular since they are a good compromise between rigidity and weight and can be built by additive manufacturing techniques. Their optimization has recently attracted some attention, based on the homogenization method, mostly for compliance minimization. The goal of our two-part work is to extend lattice optimization to stress minimization problems two-dimensionally. The present first part is devoted to the choice of a parametrized periodicity cell that will be used for structural optimization in the second part of our work. In order to avoid stress concentration, we propose a square cell microstructure with a super-ellipsoidal hole instead of the standard rectangular hole often used for compliance minimization. This type of cell is parametrized two-dimensionally by one orientation angle, two semi-axis and a corner smoothing parameter. We first analyse their influence on the stress amplification factor by performing some numerical experiments. Second, we compute the optimal corner smoothing parameter for each possible microstructure and macroscopic stress. Then, we average (with specific weights) the optimal smoothing exponent with respect to the macroscopic stress. Finally, to validate the results, we compare our optimal super-ellipsoidal hole with the Vigdergauz microstructure which is known to be optimal for stress minimization in some special cases. This article is part of the theme issue 'Topics in mathematical design of complex materials'.

Download full-text PDF

Source
http://dx.doi.org/10.1098/rsta.2020.0109DOI Listing

Publication Analysis

Top Keywords

stress minimization
12
lattice structures
8
compliance minimization
8
super-ellipsoidal hole
8
corner smoothing
8
smoothing parameter
8
macroscopic stress
8
stress
7
minimization lattice
4
structures micro-structure
4

Similar Publications

Fine-tuning gibberellin improves rice alkali-thermal tolerance and yield.

Nature

January 2025

Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.

Soil alkalinization and global warming are predicted to pose major challenges to agriculture in the future, as they continue to accelerate, markedly reducing global arable land and crop yields. Therefore, strategies for future agriculture are needed to further improve globally cultivated, relatively high-yielding Green Revolution varieties (GRVs) derived from the SEMIDWARF 1 (SD1) gene. Here we propose that precise regulation of the phytohormone gibberellin (GA) to optimal levels is the key to not only confer alkali-thermal tolerance to GRVs, but also to further enhance their yield.

View Article and Find Full Text PDF

This case highlights that refractory pancytopenia leading to death can occur with methimazole treatment even at a very low cumulative dose and after a very short duration of exposure. In addition, the standard treatments to correct the pancytopenia may not be effective and a bone marrow transplant may be required. Current American Thyroid Association guidelines do not recommend routine monitoring of the complete blood count in patients receiving thionamides because of the rapidity of the onset of agranulocytosis and the lack of positive evidence that such monitoring would be useful.

View Article and Find Full Text PDF

The effect of bone relaxation on the simulated pull-off force of a cementless femoral knee implant.

J Biomech

January 2025

Radboudumc, Orthopaedic Research Lab, PO Box 9101, 6500 HB Nijmegen, the Netherlands.

Aseptic loosening is the primary cause of revision in cementless total knee arthroplasty (TKA), emphasizing the importance of strong initial stability for long-term implant success. Pre-clinical evaluations are crucial for understanding implant fixation mechanics and improving implant designs. Finite element (FE) analysis models often use linear elastic bone material models, which do not accurately reflect bone's mechanical behavior.

View Article and Find Full Text PDF

Mechanism of chaperone recruitment and retention on mitochondrial precursors.

Mol Biol Cell

January 2025

MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.

Nearly all mitochondrial proteins are imported into mitochondria from the cytosol. How nascent mitochondrial precursors acquire and sustain import-competence in the cytosol under normal and stress conditions is incompletely understood. Here, we show that under normal conditions, the Hsc70 and Hsp90 systems interact with and redundantly minimize precursor degradation.

View Article and Find Full Text PDF

Objectives: Every year, around 300 million surgeries are conducted worldwide, with an estimated 4.2 million deaths occurring within 30 days after surgery. Adequate patient education is crucial, but often falls short due to the stress patients experience before surgery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!