We illustrate the development of NaDyF-NaGdF core-shell nanoparticles (NPs) for targeting prostate cancer cells using a preclinical 9.4 T magnetic resonance imaging (MRI) of live animals. The NPs composed of paramagnetic Dy and Gd (- and -contrast agents, respectively) demonstrate proton relaxivities of = 20.2 mM s and = 32.3 mM s at clinical 3 T and = 9.4 mM s and = 144.7 mM s at preclinical 9.4 T. The corresponding relaxivity values per NP are = 19.4 × 10 mM s and = 33.0 × 10 mM s at 3 T and = 9.0 × 10 mM s and = 147.0 × 10 mM s at 9.4 T. active targeting of human prostate tumors grown in nude mice revealed docking of anti-prostate-specific membrane antigen (PSMA) antibody-tagged NPs at tumor sites post-24 h of their intravenous injection. On the other hand, passive targeting showed preferential accumulation of NPs at tumor sites only within 2 h of their injection, ascribed to the enhanced permeation and retention effect of the tumor. A biodistribution study employing the harvested organs of mice, post-24 h injection of NPs, quantified active targeting as nearly twice as efficient as passive targeting. These outcomes provide potential opportunities for noninvasive diagnosis using NaDyF-NaGdF core-shell NPs for target-specific MRI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c19273 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.
Emulsion interface engineering has been widely employed for the synthesis of nanomaterials with various morphologies. However, the instability of the liquid-liquid interface and uncertain interfacial interactions impose significant limitations on controllable fabrications. Here, we developed a liquid-nano-liquid interface-oriented anisotropic encapsulation strategy for fabricating asymmetric nanohybrids.
View Article and Find Full Text PDFACS Nano
January 2025
MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, School of Materials Science and Engineering, Institute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
Room temperature (RT) synthesized mixed bromine and chlorine CsPbBrCl perovskite quantum dots (Pe-QDs) offer notable advantages for blue quantum dot light-emitting diodes (QLEDs), such as cost-effective processing and narrow luminescence peaks. However, the efficiency of blue QLEDs using these RT-synthesized QDs has been limited by inferior crystallinity and deep defect presence. In this study, we demonstrate a precise approach to constructing high-quality gradient core-shell (CS) structures of CsPbBrCl QD through anion exchange.
View Article and Find Full Text PDFNanoscale
January 2025
4109 Newman & Wolfrom Laboratory, 100 W 18th Ave, Columbus, OH 43210, USA.
A variety of ZnCdS-based semiconductor nanoparticle heterostructures with extended exciton lifetimes were synthesized to enhance the efficacy of photocatalytic hydrogen production in water. Specifically, doped nanoparticles (NPs), as well as core/shell NPs with and without palladium and platinum co-catalysts, were solubilized into water using various methods to assess their efficacy for solar H fuel synthesis. The best results were obtained with low bandgap ZnCdS cores and ZnCdS/ZnS core/shell NPs with palladium co-catalysts.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, China.
Non-enzymatic glucose detection is an effective strategy to control the blood glucose level of diabetic patients. A novel hierarchical core-shell structure of nickel hydroxide shell coated copper hydroxide core based on copper foam (Ni(OH)@Cu(OH)-CF) was fabricated and derived from NiO@CuO-CF for glucose sensing. Cyclic voltammetry and amperometry experiments have demonstrated the efficient electrochemical catalysis of glucose under alkaline conditions.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department No. 78 Physical and Technical Problems of Metrology, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia.
Monodisperse films of spherical tantalum oxide (V) nanoclusters and spherical tantalum nanoclusters with a tantalum oxide shell with diameters of 1.4-8 nm were obtained by magnetron sputtering. The size of the deposited nanoclusters was controlled using a quadrupole mass filter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!