Hypoxia Promotes Adipose-Derived Stem Cells to Protect Human Dermal Microvascular Endothelial Cells Against Hypoxia/Reoxygenation Injury.

J Surg Res

Plastic and Reconstructive Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China, 100029. Electronic address:

Published: October 2021

AI Article Synopsis

  • Microcirculation plays a critical role in regulating ischemia-reperfusion (I/R) injury during skin flap transplantation, and co-culturing with adipose-derived stem cells (ADSCs) may help protect human dermal microvascular endothelial cells (HDMECs) from damage.
  • Co-culture with ADSCs, especially those preconditioned in low oxygen, significantly reduced apoptosis and enhanced cell proliferation in HDMECs subjected to I/R injury.
  • The study highlights the potential for using ADSCs as a simple and effective method to mitigate I/R injury in surgical procedures involving skin flaps.

Article Abstract

Background: Microcirculation is important for regulating ischemia-reperfusion (I/R) injury associated with skin flap transplantation surgery. We investigated whether co-culture with adipose-derived stem cells (ADSCs) could protect human dermal microvascular endothelial cells (HDMECs) from I/R injury by inhibiting cell apoptosis and enhancing cell proliferation. We also investigated the effects of hypoxic preconditioning on ADSCs.

Materials And Methods: HDMECs were divided into four groups, control, HDMECs in normoxic culture conditions; hypoxia/reoxygenation (H/R), HDMECs in a hypoxic incubator for 8 h then in saturated aerobic culture medium for 24 h; H/R + ADSC(N), HDMECs treated similar to the H/R group then co-cultured with normoxic ADSCs; and H/R + ADSC(H), HDMECs treated similar to the H/R group then co-cultured with hypoxia preconditioned ADSCs.

Results: The rate of HDMECs apoptosis significantly increased in the H/R group, but decreased upon co-culture with ADSCs for 24 h, especially in the H/R + ADSC(H) group. Co-culture with ADSCs, especially hypoxia preconditioned ADSCs, significantly enhanced cell proliferation ability compared with that of the H/R group after 48 h and 72 h, but not after 24 h. Vascular endothelial growth factor levels were significantly higher in the H/R + ADSC(N) and H/R + ADSC(H) groups than in the H/R group.

Conclusions: ADSCs attenuated H/R injury in endothelial cells by promoting proliferation ability and reducing apoptosis, with an increase in Vascular endothelial growth factor level, especially in the context of hypoxic preconditioning. This approach suggests the potential for an easy and safe method to reduce I/R injury associated with skin flap transplantation surgery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jss.2021.04.013DOI Listing

Publication Analysis

Top Keywords

h/r group
16
endothelial cells
12
i/r injury
12
adipose-derived stem
8
stem cells
8
protect human
8
human dermal
8
dermal microvascular
8
microvascular endothelial
8
injury associated
8

Similar Publications

Background: Myocardial ischemia-reperfusion injury (MIRI) is an important complication in the treatment of heart failure, and its treatment has not made satisfactory progress. Nitroxyl (HNO) showed protective effects on the heart failure, however, the effect and underlying mechanism of HNO on MIRI remain largely unclear.

Methods: MIRI model in this study was established to induce H9C2 cell injury through hypoxia/reoxygenation (H/R) in vitro.

View Article and Find Full Text PDF

Clinical T3 (cT3) breast cancer (BC) presents a challenge for achieving cosmetically acceptable breast conservation, and neoadjuvant chemotherapy (NAC) is commonly used for cytoreduction in these high-risk cancers. MammaPrint risk-of-recurrence and BluePrint molecular subtyping genomic signatures have demonstrated high accuracy in predicting chemotherapy benefits. Here, we examined the utility of MammaPrint/BluePrint for predicting pathological Complete Response (pCR) rates to NAC among 404 patients diagnosed with cT3 early-stage BC.

View Article and Find Full Text PDF

Aim: To study the effect and elucidate the underlying mechanisms of VDAC1-ΔC on autophagy in renal tubular epithelial cells injured by hypoxia/reoxygenation.

Methods: C57/BL6 mice were randomly divided into groups: sham operation group, IRI 1d group and IRI 2d group. The inner canthal blood of mice was collected to detect the levels of serum creatinine and urea nitrogen and kidney tissues were sampled, and sections were stained with Periodic acid-Schiff for morphological evaluation.

View Article and Find Full Text PDF

SS-31@Fer-1 Alleviates ferroptosis in hypoxia/reoxygenation cardiomyocytes via mitochondrial targeting.

Biomed Pharmacother

January 2025

Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China. Electronic address:

Purpose: Targeting mitochondrial ferroptosis presents a promising strategy for mitigating myocardial ischemia-reperfusion (I/R) injury. This study aims to evaluate the efficacy of the mitochondrial-targeted ferroptosis inhibitor SS-31@Fer-1 (elamipretide@ferrostatin1) in reducing myocardial I/R injury.

Methods: SS-31@Fer-1 was synthesized and applied to H9C2 cells subjected to hypoxia/reoxygenation (H/R) to assess its protective effects.

View Article and Find Full Text PDF

Background: There is no standard treatment to accelerate recovery from melphalan-induced thrombocytopenia in multiple myeloma (MM) patients undergoing autologous stem cell transplantation (ASCT). Romiplostim, a thrombopoietin receptor agonist, has been developed to upregulate platelet production.

Objective: This study aimed to assess the efficacy and safety of romiplostim in reducing platelet transfusions post-ASCT in MM patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!