The role of uptake and degradation in the regulation of peripheral serotonin dynamics in Gulf toadfish, Opsanus beta.

Comp Biochem Physiol A Mol Integr Physiol

Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA.

Published: August 2021

The neurotransmitter serotonin (5-hyroxytryptamine, 5-HT) is involved in a variety of peripheral processes. Arguably most notable is its role as a circulating vasoconstrictor in the plasma of vertebrates. Plasma 5-HT is maintained at constant levels under normal conditions through the processes of cellular uptake, degradation, and excretion, known collectively as clearance. However, the degree to which each individual component of clearance contributes to this whole animal response remains poorly understood. The goal of this experiment was to determine the extent to which transporter-mediated uptake and intracellular degradation contribute to 5-HT clearance in the model teleost Gulf toadfish (Opsanus beta). Fish that were treated with the 5-HT transport inhibitors fluoxetine, buproprion, and decynium-22 had 1.47-fold higher plasma 5-HT concentrations and a 40% decrease in clearance rate compared to control fish. In contrast, fish treated with the MAO inhibitor clorgyline had a 1.54-fold increase in plasma 5-HT with no change in clearance rate. The results show that transporter-mediated 5-HT uptake plays an important role in controlling circulating 5-HT and whole body 5-HT homeostasis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpa.2021.110980DOI Listing

Publication Analysis

Top Keywords

plasma 5-ht
12
5-ht
9
uptake degradation
8
gulf toadfish
8
toadfish opsanus
8
opsanus beta
8
fish treated
8
clearance rate
8
clearance
5
role uptake
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!