KDM2B promotes cell viability by enhancing DNA damage response in canine hemangiosarcoma.

J Genet Genomics

Laboratory of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818 Japan.

Published: July 2021

Epigenetic regulators have been implicated in tumorigenesis of many types of cancer; however, their roles in endothelial cell cancers such as canine hemangiosarcoma (HSA) have not been studied. In this study, we find that lysine-specific demethylase 2b (KDM2B) is highly expressed in HSA cell lines compared with normal canine endothelial cells. Silencing of KDM2B in HSA cells results in increased cell death in vitro compared with the scramble control by inducing apoptosis through the inactivation of the DNA repair pathways and accumulation of DNA damage. Similarly, doxycycline-induced KDM2B silencing in tumor xenografts results in decreased tumor sizes compared with the control. Furthermore, KDM2B is also highly expressed in clinical cases of HSA. We hypothesize that pharmacological KDM2B inhibition can also induce HSA cell death and can be used as an alternative treatment for HSA. We treat HSA cells with GSK-J4, a histone demethylase inhibitor, and find that GSK-J4 treatment also induces apoptosis and cell death. In addition, GSK-J4 treatment decreases tumor size. Therefore, we demonstrate that KDM2B acts as an oncogene in HSA by enhancing the DNA damage response. Moreover, we show that histone demethylase inhibitor GSK-J4 can be used as a therapeutic alternative to doxorubicin for HSA treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jgg.2021.02.005DOI Listing

Publication Analysis

Top Keywords

dna damage
12
cell death
12
hsa
9
enhancing dna
8
damage response
8
canine hemangiosarcoma
8
kdm2b highly
8
highly expressed
8
hsa cell
8
hsa cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!